

Lecture Notes in Computer Science 4989
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jacques Garrigue Manuel Hermenegildo (Eds.)

Functional and
Logic Programming

9th International Symposium, FLOPS 2008
Ise, Japan, April 14-16, 2008
Proceedings

13

Volume Editors

Jacques Garrigue
Nagoya University
Graduate School of Mathematics
Chikusa-ku, Nagoya 464-8602, Japan
E-mail: garrigue@math.nagoya-u.ac.jp

Manuel Hermenegildo
U. Politecnica de Madrid
IMDEA-Software Facultad de Informatica
28660 Boadilla del Monte, Madrid, Spain
E-mail: herme@acm.org

Library of Congress Control Number: 2008923757

CR Subject Classification (1998): D.1.6, D.1, D.3, F.3, I.2.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-78968-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78968-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12251537 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 9th International Symposium on
Functional and Logic Programming (FLOPS 2008), held in Ise, Japan, April
14–16, 2008 at the Ise City Plaza.

FLOPS is a forum for research on all issues concerning functional program-
ming and logic programming. In particular it aims to stimulate the cross-
fertilization as well as integration of the two paradigms. The previous FLOPS
meetings took place in Fuji-Susono (1995), Shonan (1996), Kyoto (1998),
Tsukuba (1999), Tokyo (2001), Aizu (2002), Nara (2004), and again Fuji-Susono
(2006). Since its 1999 edition, FLOPS proceedings have been published by
Springer in its Lecture Notes in Computer Science series, as volumes 1722, 2024,
2441, 2998 and 3945, respectively.

In response to the call for papers, 59 papers were submitted. Each paper was
reviewed by at least three Program Committee members, with the help of expert
external reviewers. The Program Committee meeting was conducted electroni-
cally, for a period of two weeks in December 2007. After careful and thorough
discussion, the Program Committee selected 20 papers (33%) for presentation at
the conference. In addition to the 20 contributed papers, the symposium included
talks by three invited speakers: Peter Dybjer (Chalmers University of Technol-
ogy), Naoki Kobayashi (Tohoku University) and Torsten Schaub (University of
Potsdam).

On behalf of the Program Committee, we would like to thank the invited
speakers, who agreed to give talks and contribute papers, and all those who
submitted papers to FLOPS 2008. As Program Chairs, we would like to sincerely
thank all the members of the FLOPS 2008 Program Committee for their excellent
job, and all the external reviewers for their invaluable contribution. We are
also grateful to Andrei Voronkov for making EasyChair available to us. The
support of our sponsors is acknowledged. We are indebted to the Japan Society
for Software Science and Technology (JSSST) SIG-PPL, the Association for
Logic Programming (ALP), the Asian Association for Foundation of Software
(AAFS), the Association for Computing Machinery (ACM) SIGPLAN and the
International Information Science Foundation. Finally, we would like to thank
members of the Local Arrangements Committee for their invaluable support
throughout the preparation and organization of the symposium.

Ferbruary 2008 Jacques Garrigue
Manuel Hermenegildo

Symposium Organization

Program Chairs

Jacques Garrigue Nagoya, Japan
Manuel Hermenegildo New Mexico, USA and Madrid, Spain

Program Committee

Mar̀ıa Alpuente Valencia, Spain
Sergio Antoy Portland, OR, USA
Matthias Blume TTI, Chicago, USA
Tyng-Ruey Chuang Academia Sinica, Taiwan
Zhenjiang Hu Tokyo, Japan
Oleg Kiselyov FNMOC, Monterey, USA
Herbert Kuchen Münster, Germany
Dale Miller INRIA, Palaiseau, France
Atsushi Ohori Tohoku, Japan
Enrico Pontelli New Mexico, USA
Kristoffer Rose IBM T.J. Watson Research Center, USA
Kazunori Ueda Waseda, Japan
Peter Van Roy Louvain-la-Neuve, Belgium
Benjamin Werner INRIA, Palaiseau, France

Local Arrangements Chair

Shoji Yuen Nagoya, Japan

External Reviewers

Zena Ariola
Christian Arndt
David Baelde
Demis Ballis
Sylvie Boldo
Bernd Braßel
Sebastien Briais
Daniel Brown
Chin-Lung Chang
Kung Chen
Olaf Chitil

Marco Comini
Mario Coppo
Alessandro Dal Palu
Olivier Danvy
Mariangiola Dezani
Agostino Dovier
Derek Dreyer
Kento Emoto
Santiago Escobar
Moreno Falaschi
Jean-Christophe Filliâtre

VIII Organization

Robby Findler
Sebastian Fischer
Matthew Fluet
Gopal Gupta
Susumu Hayashi
Makoto Hamana
John Harrison
Hugo Herbelin
Christian Hermanns
Jose Hernandez-Orallo
Petra Hofstedt
Jose Iborra
Yves Jaradin
Christophe Joubert
Yukiyoshi Kameyama
Herbert Kuchen
Andres Löh
Roman Leshchinskiy
Dongxi Liu
Rita Loogen
Salvador Lucas
Sunita Marathe
Kazutaka Matsuda
Kiminori Matsuzaki
Boris Mejias
Greg Michaelson
Akimasa Morihata
Shin-Cheng Mu

Chet Murthy
Keisuke Nakano
Russell O’Connor
John O’Donnell
James Ortiz
Sungwoo Park
Frances Perry
David Pichardie
Inna Pivkina
Maurizio Proietti
Frank Raiser
Maria José Ramirez
Isao Sasano
Max Schaefer
Peter Schneider-Kamp
Chung-chieh Shan
Zhong Shao
Matthieu Sozeau
Lutz Strassburger
Doaitse Swierstra
Ashish Tiwari
Andrew Tolmach
Lorenzo Tortora de Falco
Son Tran
Helmut Veith
Alicia Villanueva
Fei Xie
Na Xu

Table of Contents

Invited Papers

Model-Based Knowledge Representation and Reasoning Via Answer
Set Programming . 1

Torsten Schaub

On the Algebraic Foundation of Proof Assistants for Intuitionistic Type
Theory . 3

Andreas Abel, Thierry Coquand, and Peter Dybjer

Substructural Type Systems for Program Analysis 14
Naoki Kobayashi

Refereed Papers

Constraints I

Integrating Answer Set Reasoning with Constraint Solving
Techniques . 15

Veena S. Mellarkod and Michael Gelfond

Optimizing Compilation of CHR with Rule Priorities 32
Leslie De Koninck, Peter J. Stuckey, and Gregory J. Duck

Constructive Arithmetic

Certified Exact Real Arithmetic Using Co-induction in Arbitrary
Integer Base . 48

Nicolas Julien

Pure, Declarative, and Constructive Arithmetic Relations (Declarative
Pearl) . 64

Oleg Kiselyov, William E. Byrd, Daniel P. Friedman, and
Chung-chieh Shan

Dependent Types

On-Demand Refinement of Dependent Types . 81
Hiroshi Unno and Naoki Kobayashi

Proving Properties about Lists Using Containers . 97
Rawle Prince, Neil Ghani, and Conor McBride

X Table of Contents

Rewriting

Termination of Narrowing in Left-Linear Constructor Systems 113
Germán Vidal

Complexity Analysis by Rewriting . 130
Martin Avanzini and Georg Moser

Rewriting and Call-Time Choice: The HO Case . 147
Francisco Javier López-Fraguas, Juan Rodŕıguez-Hortalá, and
Jaime Sánchez-Hernández

Program Transformation

Semantics and Pragmatics of New Shortcut Fusion Rules 163
Janis Voigtländer

A Generalization of the Folding Rule for the Clark-Kunen Semantics . . . 180
Javier Álvez and Paqui Lucio

Logic and Lambda-Calculus

Types for Hereditary Head Normalizing Terms . 195
Makoto Tatsuta

A New Translation for Semi-classical Theories — Backtracking without
CPS . 210

Satoshi Kobayashi

Types

Undoing Dynamic Typing (Declarative Pearl) . 224
Nick Benton

Typed Dynamic Control Operators for Delimited Continuations 239
Yukiyoshi Kameyama and Takuo Yonezawa

Strictness Analysis Algorithms Based on an Inequality System for Lazy
Types . 255

Hirofumi Yokouchi

Constraints II

Quantitative Logic Programming Revisited . 272
Mario Rodŕıguez-Artalejo and Carlos A. Romero-Dı́az

Table of Contents XI

Formalizing a Constraint Deductive Database Language Based on
Hereditary Harrop Formulas with Negation . 289

Susana Nieva, Jaime Sánchez-Hernández, and Fernando Sáenz-Pérez

Debugging

Declarative Diagnosis of Missing Answers in Constraint
Functional-Logic Programming . 305

Rafael Caballero, Mario Rodŕıguez Artalejo, and
Rafael del Vado Vı́rseda

EasyCheck — Test Data for Free . 322
Jan Christiansen and Sebastian Fischer

Author Index . 337

Model-Based Knowledge Representation and

Reasoning Via Answer Set Programming

Torsten Schaub�

Universität Potsdam, Institut für Informatik,
August-Bebel-Str. 89, D-14482 Potsdam, Germany

torsten@cs.uni-potsdam.de

Abstract. The field of knowledge representation and reasoning has been
going through a methodological shift during recent years. While the past
was dominated by query-oriented reasoning, model-based techniques be-
come more and more popular nowadays. This development was primarily
driven by the availability of highly efficient Boolean constraint solvers,
like satisfiability and answer set solvers. The general idea is to translate
an application problem into a logical specification. This specification is
in turn passed to a solver, which outputs models representing solutions
to the initial application problem.

The talk will provide an introduction to answer set programming
(ASP), its proof-theoretic foundations, methodology, implementation
techniques along with a glimpse of an exemplary application. Besides
knowledge representation and reasoning, ASP has its roots in deductive
databases, nonmonotonic reasoning, and logic programming. Applica-
tions are specified in ASP in terms of sets of logical rules. Modern ASP
solvers rely on high-performance Boolean constraint solving techniques,
which allow them to tackle application domains consisting of millions of
variables. Meanwhile, this approach proved to be an effective tool in a
range of applications, like planning, model checking, and bio-informatics.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press,
Cambridge (1988)

2. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273
(1999)

3. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K., Marek, W., Truszczyński, M., Warren, D. (eds.) The Logic
Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer, Heidelberg
(1999)

� Affiliated with the School of Computing Science at Simon Fraser University, Burn-
aby, Canada, and the Institute for Integrated and Intelligent Systems at Griffith
University, Brisbane, Australia.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 T. Schaub

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

5. Anger, C., Konczak, K., Linke, T., Schaub, T.: A glimpse of answer set program-
ming. Künstliche Intelligenz 19(1), 12–17 (2005)

6. Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming.
In: Artëmov, S., Barringer, H., d’Avila Garcez, A., Lamb, L., Woods, J. (eds.) We
Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 615–664. College
Publications (2005)

7. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński,
M.: The first answer set programming system competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer,
Heidelberg (2007)

8. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, Elsevier,
Amsterdam (2008)

On the Algebraic Foundation

of Proof Assistants
for Intuitionistic Type Theory

Andreas Abel1, Thierry Coquand2, and Peter Dybjer2

1 Institut für Informatik, Ludwig-Maximilians-Universität
Oettingenstr. 67, D-80538 München

2 Department of Computer Science, Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Abstract. An algebraic presentation of Martin-Löf’s intuitionistic type
theory is given which is based on the notion of a category with families
with extra structure. We then present a type-checking algorithm for the
normal forms of this theory, and sketch how it gives rise to an initial cat-
egory with families with extra structure. In this way we obtain a purely
algebraic formulation of the correctness of the type-checking algorithm
which provides the core of proof assistants for intuitionistic type theory.

1 Introduction

The type-checking algorithm [6] is the core of proof assistants for intensional
dependent type theories such as Coq [3], Agda [13], and Epigram [5]. Such a
proof assistant is essentially a tool for checking whether a given term a has a
given type A relative to a context Γ :

Γ � a : A

The user writes a type A representing a proposition to be proved, and the proof
assistant aids her in constructing a proof a which witnesses the truth of A.

We shall here assume that Γ, A, and a are all in normal form with respect
to the reduction rules, although this restriction may not be strictly imposed in
proof assistants.

In this note we shall present a new algebraic approach to the correctness of the
type-checking algorithms. Such correctness is not only important for the trust
in the proof assistants, it is also philosophically significant. The decidability of
typing is one of the main reasons for preferring intensional [10,12] to extensional
type theory [9]. According to a certain point of view in constructivism it should
be mechanically decidable whether a certain construction a is a witness to the
truth of a given proposition A.

We will here consider a core dependent type theory: Martin-Löf’s intuitionistic
type theory where the only type formers are dependent function types and a
universe of small types. This is essentially Martin-Löf’s logical framework [10,12],

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 3–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 A. Abel, T. Coquand, and P. Dybjer

except that we here consider β-conversion only and do not have the η-rule.
Moreover, we use the same normal terms for codes for small types and for the
small types themselves. In this sense our universe of small type is formulated
à la Russell, in spite of the fact that our algebraic framework inevitably uses
universes à la Tarski.

We expect our approach to extend smoothly if we add more type formers such
as Σ, +, N, Nn to our theory. We also expect that our approach can be extended
to deal with η-conversion [1,2].

Martin-Löf type theory is usually expressed as a system of axioms and infer-
ence rules with four forms of judgements

Γ � a : A

Γ � A type

Γ � a = a′ : A

Γ � A = A′

Implicitly, there is also a judgement expressing the correctness of contexts:

Γ �

In this inference rule presentation it is not assumed that contexts, types, and
terms are normal. However, we expect that whenever Γ, A, and a are normal
(with respect to the reduction rules of the theory) then the type-checking al-
gorithm will accept Γ � a : A whenever it is a provable from the axioms and
inference rules of Martin-Löf type theory.

The situation is analogous for the judgements Γ � A type, and Γ �, although
the proof assistant may not give the user access to them.

As regards the equality judgements, we have that if Γ, A, a, and a′ are normal,
then Γ � a = a′ : A is derivable by the axioms and inference rules iff a and a′

are identical (up to α-congruence), and similarly for Γ � A = A′.
However, in spite of many years of research into type-checking dependent

types a completely satisfactory state of affairs has not yet been reached. On the
one hand it has shown difficult to use traditional methods to obtain a clear proof
of some essentially lemmas, such as the fact that the dependent function space
former Π is one-to-one. On the other hand there are many different syntactic
formulations of dependent type theory, and it is not clear which is the canonical
one. There are different treatments of variables. Should we use explicit or implicit
substitutions? Is the inference rule for substitution primitive? Should we use
Curry or Church-style lambda terms? Etc.

In this note we present an algebraic formulation of Martin-Löf’s intensional
intuitionistic type theory which is based on the notion of a category with families
(cwfs) [7]. In this way we hope to achieve a more satisfactory basis for developing
the metatheory of type theory.

There are several reasons for prefering an algebraic formulation to the usual
formulations based on the lambda calculus:

On the Algebraic Foundation of Proof Assistants 5

– It can be argued that it is more “canonical”. There is less freedom of choice
of syntactic detail.

– The presentation becomes cleaner since we do not first need to prove a
number of meta-theorems of syntax.

– You get a clearer notion of model which is easier to work with.

We shall here present a type-checking algorithm inspired by the notion of
categories with families. We have here also benefited from our recent work on
normalization by evaluation (nbe) [1,2]. In these papers decidability of equality is
proved for some fairly standard lambda-calculus based formulations of Martin-
Löf type theory. We propose to extend this work and also formulate nbe for
categories with families (with extra structure).

The rest of the note is organized as follows. We first recall the notion of
a category with families. Then we extend this notion with extra structure for
interpreting dependent function types and universes. Finally, we outline how to
construct the cwf of type-checked normal forms.

2 Categories with Families

Categories with families (cwfs) [7,8] is a categorical notion of model of the
most basic rules of dependent type theory; those which deal with context
formation, variables, and substitution. Categories with families are equivalent
to Cartmell’s categories with attributes, but the reformulation makes it possible
to obtain a straightforward correspondence to the inference rules of dependent
type theory, especially when formulated as a calculus of explicit substitutions,
see Martin-Löf [11].

A category with families consists of a category C and a family-valued functor
T : Cop → Fam, where C has a terminal object. Moreover, there is an operation
of context comprehension closely related to Lawvere’s notion of comprehension
for hyperdoctrines.

Here Fam is the category of families of sets, where an object is a family of
sets (B(x))x∈A and a morphism with source (B(x))x∈A and target (B′(x′))x′∈A′

is a pair consisting of a function f : A → A′ and a family of functions g(x) :
B(x)→ B′(f(x)) indexed by x ∈ A.

C is the category of contexts and substitutions. If Γ ∈ |C| is a context, then
T (Γ) is the family of terms of a type A in Γ which is indexed by the well-
formed types A in Γ . The arrow part of the functor T represents substitution in
types and terms. The terminal object of C represents the empty context and the
terminal arrow represents the empty substitution. The context comprehension
operation provides representations for context extension, substitution extension,
assumption, and a weakening substitution. The reader is referred to Dybjer [7]
and Hofmann [8] for details.

The category Cwf is obtained by defining the notion of cwf-morphism as
follows. Let (C, T) denote a cwf with base category C and functor T . A morphism
of cwfs with source (C, T) and target (C′, T ′) is a pair (F, σ), where F : C → C′

6 A. Abel, T. Coquand, and P. Dybjer

is a functor and σ : T → T ′F is a natural transformation, such that terminal
object and context comprehension are preserved on the nose.

The notion of a category with families can be formalized as a generalized alge-
braic theory in the sense of Cartmell [4]. Generalized algebraic theories generalize
many-sorted algebraic theories, by using dependent types. They consist of sort
symbols, operator symbols, and equations between well-formed sort expressions.
Here we present the generalized algebraic theory of categories with families using
inference rule notation, to highlight the fact that it provides a variable-free sub-
stitution calculus for dependent types. To improve readability we use “polymor-
phic” notation. For example, we write δ ◦ γ instead of the proper δ ◦Θ,Δ,Γ γ, etc.

Rules for the category C
Ctxt sort

Δ, Γ : Ctxt
Δ→ Γ sort

Θ, Δ, Γ : Ctxt γ : Δ→ Γ δ : Θ→ Δ

γ ◦ δ : Θ→ Γ

Γ : Ctxt
idΓ : Γ → Γ

(γ ◦ δ) ◦ θ = γ ◦ (δ ◦ θ)
idΓ ◦ γ = γ

γ ◦ idΓ = γ

Rules for the functor T
Γ : Ctxt

Ty(Γ) sort

Γ : Ctxt A : Ty(Γ)
Γ � A sort

Δ, Γ : Ctxt A : Ty(Γ) γ : Δ→ Γ

A[γ] : Ty(Δ)

Δ, Γ : Ctxt A : Ty(Γ) a : Γ � A γ : Δ→ Γ

a[γ] : Δ � A[γ]

A[γ ◦ δ] = A[γ][δ]

A[idΓ] = A

a[γ ◦ δ] = a[γ][δ]

a[idΓ] = a

On the Algebraic Foundation of Proof Assistants 7

Rules for the terminal object

[] : Ctxt

Γ : Ctxt
〈〉Γ : Γ → []

〈〉Γ ◦ γ = 〈〉Γ
id[] = 〈〉[]

Rules for context comprehension

Γ : Ctxt A : Ty(Γ)
Γ ; A : Ctxt

Δ, Γ : Ctxt A : Ty(Γ) γ : Δ→ Γ a : Δ � A[γ]

〈γ, a〉 : Δ→ Γ ; A

Γ : Ctxt A : Ty(Γ)
pΓ,A : Γ ; A→ Γ

Γ : Ctxt A : Ty(Γ)
qΓ,A : Γ ; A � A[pΓ,A]

pΓ,A ◦ 〈γ, a〉 = γ

qΓ,A[〈γ, a〉] = a

〈δ, a〉 ◦ γ = 〈δ ◦ γ, a[γ]〉
idΓ ;A = 〈pΓ,A, qΓ,A〉

3 Adding Dependent Function Types and a Universe of
Small Types

Categories with families only provide the most basic structure for interpreting
dependent type theories, and provide no structure for interpreting any type
formers at all. In these notes we consider a type theory with dependent function
types and one universe. To interpret these we need some extra structure. We
present this structure by adding new operators corresponding to the formation,
introduction, and elimination rules for the new type constructor, and to add new
equations corresponding to the equality rules. This is done by translating the
usual inference rules of type theory into the variable free language of categories
with families.

8 A. Abel, T. Coquand, and P. Dybjer

Rules for dependent function types

Γ : Ctxt A : Ty(Γ) B : Ty(Γ ; A)
Π(A, B) : Ty(Γ)

Γ : Ctxt A : Ty(Γ) B : Ty(Γ ; A) b : Γ ; A � B

λ(b) : Γ � Π(A, B)

Γ : Ctxt A : Ty(Γ) B : Ty(Γ ; A) c : Γ � Π(A, B) a : Γ � A

ap(c, a) : Γ � B[〈idΓ , a〉]

Π(A, B)[γ] = Π(A[γ], B[〈γ ◦ pΓ,A, qΓ,A〉])
λ(b)[γ] = λ(b[〈γ ◦ pΓ,A, qΓ,A〉])

ap(c, a)[γ] = ap(c[γ], a[γ])
ap(λ(b), a) = b[〈idΓ , a〉]

The three first of the five equations represent the laws for substitution under Π ,
λ, and ap. The fourth represents β-conversion.

Rules for a universe of small types

Γ : Ctxt
U : Ty(Γ)

Γ : Ctxt a : Γ � U
T(a) : Ty(Γ)

Γ : Ctxt a : Γ � U b : Γ ; T(a) � U
Π̂(a, b) : U

U[γ] = U
T(a)[γ] = T(a[γ])

Π̂(a, b)[γ] = Π̂(a[γ], b[〈γ ◦ pΓ,A, qΓ,A〉])
T(Π̂(a, b)) = Π(T(a), T(b))

This is a universe of small types which is closed under dependent function types.
This formulation is inevitably à la Tarski rather than à la Russell.

A cwf with extra structure for dependent function types and a universe will
be called a ΠU-cwf . We can extend the notion of cwf-morphism to a notion of
morphism of ΠU-cwfs by requiring that all extra structure is preserved on the
nose. Let CwfΠU be the category of ΠU-cwfs and ΠU-cwf -morphisms. Since
ΠU-cwfs can be described as a generalized algebraic theory, it follows from a
general result by Cartmell that CwfΠU has an initial object, given syntactically
by derivations in a certain formal system for generalized algebraic theories. This
initial object is the “syntax-free” representation of a version of Martin-Löf type
theory.

On the Algebraic Foundation of Proof Assistants 9

4 A ΠU-cwf of Normal Forms

We shall now suggest how to build the ΠU-cwf N of type-checked normal forms.
We write some Haskell code and explain how to defineN in terms of it. We would
like to emphasize that the content of this section is preliminary. We have not yet
proved our type-checking algorithm correct.

First, we introduce raw syntax for normal terms t (including normal types).
They are generated together with the auxiliary subclass of neutral terms s:

t ::= s | λ(a) | Π(a, a) | U
s ::= i | ap(s, t)

where i is a natural number (a de Bruijn index). Raw normal contexts and raw
normal substitutions are represented as lists of normal terms.

Note that these raw normal terms are not type-decorated! This is unlike the
notation for cwfs, where contexts and type-arguments are part of the official
notation but were sometimes surpressed to improve readability.

The category N will be built up by type-checked normal forms. We could
write the type-checking algorithm in Haskell by introducing the data types of
normal and neutral expressions defined as follows:

data No = Ne Ne | Lam No | Pi No No | U
data Ne = Var Int | App Ne No

However, for simplicity we will define the type-checking algorithm on the type
of all (raw) expressions

data Exp = Var Int | App Exp Exp | Lam Exp | Pi Exp Exp | U

although it is intended to be applied only to those expressions in Exp which are
normal.

To this end we define four functions; isCo, isSu, isTy, and isTm which will
check the correctness of contexts, substitutions, types, and terms, respectively.
Here a type is represented by a raw expression, and substitutions and contexts
by lists of raw expressions:

type Ty = Exp
type Subst = [Exp]
type Cxt = [Ty]

Checking contexts

isCo :: Cxt -> Bool
isCo [] = True
isCo (a:cxt) = isCo cxt && isTy cxt a

checks whether a list of expressions represents a correct context. Such lists of
expressions will be the objects in the category of contexts of N .

10 A. Abel, T. Coquand, and P. Dybjer

Checking substitutions

isSu :: Cxt -> Cxt -> Subst -> Bool
isSu cxt [] [] = True
isSu cxt (b:bs) (t:ts) = isSu cxt bs ts &&

isTm cxt (subst b cxt) t

checks whether a list of expressions (the third argument) is a correct substitution
with respect to a source and a target context (the first and second argument).
Such substitutions wil be the arrows in the category of contexts of N .

Checking types

isTy :: Cxt -> Ty -> Bool
isTy cxt (Pi a b) = isTy cxt a && isTy (a:cxt) b
isTy cxt U = True
isTy cxt a = isTm cxt U a

checks whether an expression is a correct type with respect to a context. Such
types will be the “types” of N .

Checking terms

isTm :: Cxt -> Ty -> Exp -> Bool
isTm cxt (Pi a b) (Lam t) = isTm (a:cxt) b t
isTm cxt a (Lam t) = False
isTm cxt U (Pi a b) = isTm cxt U a && isTm (a:cxt) U b
isTm cxt a (Pi a b) = False
isTM cxt a U = False
isTm cxt a s = case inferTy cxt s of

Just a’ -> a == a’
Nothing -> False

checks whether an expression has a type with respect to a context. Such terms
will be the “terms” of N .

Infering the type of a neutral term. The type-checking algorithm is as usual bi-
directional: to check whether an application has a given type we try to infer the
type of the function and then check whether it matches the type of the argument.

inferTy :: Cxt -> Exp -> Maybe Ty
inferTy cxt (Var i) = Just (shift (cxt !! i) (i+1))
inferTy cxt (App s t) = case inferTy cxt s of

Just (Pi a b) -> if isTm cxt a t
then Just (subst b (t : ide))
else Nothing

otherwise -> Nothing

This function expects a neutral expression as input and tries to infer its type. It
calls an auxiliary function

On the Algebraic Foundation of Proof Assistants 11

shift :: Exp -> Int -> Exp
shift t i = subst t (map Var [i ..])

so that shift e n increases all free variables in e by n.

Implementing the operations of ΠU-cwfs. To perform type inference we also call
the “hereditary” substitution function subst. This is one of the cwf-combinators.
We will now implement them in the order they appear in the above definition of
cwf. Note that many of the equations for the cwf-combinators reappear in the
programs below, a fact which will facilitate the checking that N is a cwf.

The empty context is just the empty list and context extension is imple-
mented by the Cons-operation on lists. The composition ◦ and the identity id
combinators are implemented by

comp :: Subst -> Subst -> Subst
comp [] ts’ = []
comp (t:ts) ts’ = (subst t ts’):(comp ts ts’)

ide :: Subst
ide = map Var [0 ..]

The length of the identity substitution idΓ depends on the context Γ , but here
we use a lazy infinite list for simplicity. Note that when we check that ide is a
correct substitution with respect to a context of length n we only check the n
first elements of the list ide.

Substitution −[−] in types and terms is the same function:

subst :: Exp -> Subst -> Exp
subst (Var i) ts = ts !! i
subst (App s t) ts = app (subst s ts) (subst t ts)
subst (Lam t) ts = Lam (subst t (lift ts))
subst (Pi a b) ts = Pi (subst a ts) (subst b (lift ts))
subst U ts = U

where we use the lifting function

lift :: Subst -> Subst
lift ts = q : comp ts p

which is just an abbreviation of a cwf combinator expression.
The terminal arrow is just the empty list, and substitution extension is just

the Cons operation on lists. The projections p and q are

p :: Subst
p = map Var [1 ..]

q :: Exp
q = Var 0

12 A. Abel, T. Coquand, and P. Dybjer

Like in the case of the identity the length of the substitution pΓ,A depends on
the context Γ and for simplicity we implement it by an infinite list.

The type constructor Π and the term constructor λ are implemented by the
constructors Pi and Lam. Application is

app :: Exp -> Exp -> Exp
app (Lam t) s = subst t (s:ide)
app r s = App r s

The type constructor U and the term constructor Π̂ are implemented by the
constructors U and Pi. The decoding function T is implemented by the identity
function on expressions. We have a universe à la Russell.

We can now formulate the correctness of our type-checking algorithm as
follows: N is an initial object in CwfΠU. This states in particular that N is
categorically equivalent to any other initial ΠU-cwf, such as the variable-free
substitution calculus obtained by using Cartmell’s method for constructing ini-
tial objects from generalized algebraic theories, or any traditional presentation
of Martin-Löf type theory which we can organize as an ΠU-cwf and prove initial
in CwfΠU. See Hofmann [8] for a description of the correspondence between
cwfs and lambda calculus presentations of type theory.

References

1. Abel, A., Aehlig, K., Dybjer, P.: Normalization by evaluation for Martin-Löf type
theory with one universe. Electr. Notes Theor. Comput. Sci. 173, 17–39 (2007)

2. Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf
type theory with typed equality judgements. In: LICS, pp. 3–12 (2007)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series (2004)

4. Cartmell, J.: Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic 32, 209–243 (1986)

5. Chapman, J., Altenkirch, T., McBride, C.: Epigram reloaded: A standalone type-
checker for ETT. In: Proceedings of TFP (July, 2005)

6. Coquand, T.: An algorithm for type-checking dependent types. Sci. Comput. Pro-
gram. 26(1-3), 167–177 (1996)

7. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) TYPES 1995.
LNCS, vol. 1158, pp. 120–134. Springer, Heidelberg (1996)

8. Hofmann, M.: Syntax and semantics of dependent types. In: Pitts, A., Dybjer, P.
(eds.) Semantics and Logics of Computation, Cambridge University Press, Cam-
bridge (1996)

9. Martin-Löf, P.: Constructive mathematics and computer programming. In: Logic,
Methodology and Philosophy of Science, 1979, vol. VI, pp. 153–175. North-Holland,
Amsterdam (1982)

10. Martin-Löf, P.: Amendment to intuitionistic type theory. Notes from a lecture given
in Göteborg (March, 1986)

On the Algebraic Foundation of Proof Assistants 13

11. Martin-Löf, P.: Substitution calculus. Unpublished notes from a lecture in Göteborg
(November, 1992)

12. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
ory: An Introduction. Oxford University Press, Oxford (1990)

13. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden (September, 2007)

Substructural Type Systems

for Program Analysis

Naoki Kobayashi

Graduate School of Information Sciences, Tohoku University
koba@kb.ecei.tohoku.ac.jp

Since linear logic was proposed by Girard, a number of type systems inspired
by linear logic (or substructural logics in general) have been proposed. Exam-
ples include linear type systems, where the weakening and contraction rules are
restricted, and ordered type systems, where the exchange rule is also restricted.
Those type systems turned out to be very useful for reasoning about temporal
properties of programs, like a memory cell is deallocated only once, or a memory
cell is never read or written after it is deallocated. In this talk, I will focus on
substructural type systems for program analysis, and review their principles and
applications [1,2,3,4,5]. I will also discuss some emerging techniques and future
directions of substructural-type-based program analysis.

References

1. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Transactions on Pro-
gramming Languages and Systems 27(2), 264–313 (2005)

2. Kobayashi, N.: Quasi-linear types. In: Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, pp. 29–42 (1999)

3. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21(5), 914–947 (1999)

4. Kodama, K., Suenaga, K., Kobayashi, N.: Translation of tree-processing programs
into stream-processing programs based on ordered linear type. Journal of Functional
Programming (to appear). A preliminary summary appeared in: Chin, W.-N. (ed.)
APLAS 2004. LNCS, vol. 3302, pp. 41–56. Springer, Heidelberg (2004)

5. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Proceedings of Func-
tional Programming Languages and Computer Architecture, San Diego, California,
pp. 1–11 (1995)

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, p. 14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrating Answer Set Reasoning with

Constraint Solving Techniques

Veena S. Mellarkod and Michael Gelfond

Texas Tech University
{veena.s.mellarkod,michael.gelfond}@ttu.edu

Abstract. The paper introduces a collection of knowledge representa-
tion languages, V(C), parametrised over a class C of constraints. V(C) is
an extension of both CR-Prolog and CASP allowing the separation of a
program into two parts: a regular program of CR-Prolog and a collec-
tion of denials1 whose bodies contain constraints from C with variables
ranging over large domains. We study an instance AC0 from this fam-
ily where C is a collection of constraints of the form X − Y > K. We
give brief implementation details of an algorithm computing the answer
sets of programs of AC0 which does not ground constraint variables and
tightly couples the “classical” ASP algorithm with an algorithm check-
ing consistency of difference constraints. We present several examples
to show the methodology of representing knowledge in AC0. The work
makes it possible to solve problems which could not be solved by pure
ASP or constraint solvers.

1 Introduction

Language CR-Prolog has been shown to be a useful tool for knowledge represen-
tation and reasoning [6]. The language is expressive, and has a well understood
methodology inherited from Answer Set Prolog (ASP)[9], for representing de-
faults, causal properties of actions and fluents, various types of incompleteness,
etc. In addition it allows reasoning with complex exceptions to defaults and
hence avoids the occasional inconsistencies of ASP. CR-Prolog allows natural
encoding of “rare events”. These events are normally ignored by a reasoner as-
sociated with the program and only used to restore consistency of the reasoner’s
beliefs. For instance a program

¬p(X)← not p(X).
q(a)← ¬p(a).
[r(X)] : p(X) +←.

consists of two regular rules of Answer Set Prolog and the consistency restoring
rule, [r(X)], which says that in some rare cases, p(X) may be true. The rule is
ignored in the construction of the answer set {¬p(a), q(a)} of this program. If
however the program is expanded by ¬q(a) the rule r(a) will be used to avoid
inconsistency. The answer set of the new program will be {p(a),¬q(a)}.
1 By a denial we mean a logic programming rule with an empty head.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 15–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 V.S. Mellarkod and M. Gelfond

CR-Prolog solvers built on top of the ASP solvers: Smodels [11] and Surya
[10], proved to be sufficiently efficient for building industrial size applications
related to intelligent planning and diagnostics [6]. Neither ASP nor CR-Prolog
however, can deal with applications which require a combination of, say, plan-
ning and scheduling. This happens because scheduling normally requires pro-
grams which include variables with rather large numerical domains. ASP and
CR-Prolog solvers compute answer sets of a ground instance of the input pro-
gram. If a program contains variables with large domains such an instance can
be too large, which renders the program unmanageable for the solver, despite
the use of multiple optimization procedures.

A step toward resolving this problem was made in [7], where the authors in-
troduced a language CASP . The algorithm for computing answer sets of CASP
programs only performs a partial grounding of variables and computes answer
sets of the resulting, partially ground program by combining the classical ASP
algorithm and a constrained solver for the constraints of C. The CASP solver
built loosely couples off-the-shelf ASP solver Smodels [11] and constraint solver
GNU-Prolog [2].

In this paper we expand the idea to CR-Prolog. In particular, we introduce a
collection, V(C), of languages parametrised over a class C of constraints. V(C) is
an extension of both, CR-Prolog and CASP. We study an instance AC0 of the
resulting language where C is a collection of constraints of the form X−Y > K.
We design and implement an algorithm computing the answer sets of programs
of AC0 which does not ground constraint variables and tightly couples the clas-
sical ASP algorithm with constraint solving mechanisms. To our knowledge the
solver built is the first tightly coupled solver integrating ASP reasoning mecha-
nisms and constraint solving techniques to compute answer sets from partially
ground programs. This makes it possible to declaratively solve problems which
could not be solved by pure ASP or by pure constraint solvers. The use of the
language and the efficiency of its implementation is demonstrated by a number
of examples. The paper is organized as follows: In section 2 we define the syntax
and semantics of V(C) and AC0. Section 3 contains a brief description of the
algorithm for computing answer sets of programs in AC0. Section 4 gives exam-
ples of knowledge representation and reasoning in AC0 and gives experimental
results of on the use ofAC0 for solving a sizable planning and scheduling problem
related to the decision support system for the space shuttle controllers.

2 Syntax and Semantics of V(C)

2.1 Syntax

The language V(C) contains a sorted signature Σ, with sorts partitioned into two
classes: regular, sr, and constraint, sc. Intuitively, the former are comparatively
small but the latter are too large for the ASP grounders. Functions defined on
regular (constraint) classes are called r-functions (c-functions). Terms are built
as in first-order languages. Predicate symbols are divided into three disjoint sets
called regular, constrained and mixed and denoted by Pr, Pc and Pm respectively.

Integrating Answer Set Reasoning with Constraint Solving Techniques 17

Constraint predicate symbols are determined by C. Parameters of regular and
constraint predicates are of sorts sr and sc respectively. Mixed predicates have
parameters from both classes. Atoms are defined as usual. A literal is an atom a
or its negation ¬a. An extended literal is a literal l or not l, where not stands for
default negation. Atoms formed from regular, constraint, and mixed predicates
are called r-atoms, c-atoms and m-atoms respectively. Similarly for literals. We
assume that predicates of Pc have a predefined interpretation, represented by
the set Mc of all true ground c-atoms. For instance, if ′>′∈ Pc, and ranges over
integers, Mc consists of {...0 > −1, 1 > 0, 2 > 0, ..., 2 > 1, 3 > 1, ...}. The c-
literals allowed in V(C) depend on the class C. The V(C) rules over Σ are defined
as follows.

Definition 1 [rules]

1. A regular rule (r-rule) ρ is a statement of the form:

h1 or · · · or hk ← l1, · · · , lm, not lm+1, · · · , not ln

where k >= 0; hi’s and li’s are r-literals.
2. A constraint rule (c-rule) is a statement of the form:

← l1, · · · , lm, not lm+1, · · · , not ln

where at least one li is non-regular.
3. A consistency restoring rule (cr-rule) is a statement of the form:

r : h1 or · · · or hk
+← l1, · · · , lm, not lm+1, · · · , not ln

where k > 0, r is a term which uniquely denotes the name of the rule and
hi’s and li’s are r-literals.

head(r) = h0 or · · · or hk; body(r) = {l1, · · · , lm, not lm+1, · · · , not ln}; and
pos(r), neg(r) denote, respectively, {l1, · · · , lm} and {lm+1, · · · , ln}.

A regular rule and constraint rule have the same intuitive reading as standard
rules of ASP. The intuitive reading of a cr-rule is: if one believes in l1, . . . lm
and have no reason to believe lm+1, . . . , ln, then one may possibly believe one of
h1, . . . , hk. The implicit assumption is that this possibility is used as little as
possible, and only to restore consistency of the agent’s beliefs.

Definition 2 [program]. A V(C) program is a pair 〈Σ,Π〉, where Σ is a sorted
signature and Π is a set of V(C) rules over Σ.

Example 1. To represent conditions: “John goes to work either by car which
takes 30 to 40 minutes, or by bus which takes at least 60 minutes”, we start by
defining the signature Σ = {Cr = {start, end}, Pr = {by car, by bus}, Cc =
{Dc = [0..1439], Rc = [−1439..1439]}, Vc = {Ts, Te}, Fc = {−}, Pc = {>
}, Pm = {at}}. The sets Cr and Pr contain regular constants and predicates;
elements of Cc, Vc, Fc, and Pc are constrained constants, variables, functions

18 V.S. Mellarkod and M. Gelfond

and predicate symbols. Pm is the set of mixed predicates. Values in Dc represent
time in minutes. Consider one whole day from 12:00am to 11:59pm mapped
to 0 to 1439 minutes. Regular atom “by car” says that “John travels by car”;
mixed atom at(start, T) says that “John starts from home at time T ”. Similarly
for “by bus” and “at(end, T)”. Function “−” has the domain Dc and range Rc;
Ts, Te are variables for Dc. The rules below represent the information from the
story.

% ‘John travels either by car or bus’ is represented by an r-rule
ra : by car or by bus.
% Travelling by car takes between 30 to 40 minutes. This information is encoded
by two c-rules
rb : ← by car, at(start, Ts), at(end, Te), Te − Ts > 40.
rc : ← by car, at(start, Ts), at(end, Te), Ts − Te > −30.
% Travelling by bus takes at least 60 minutes
rd : ← by bus, at(start, Ts), at(end, Te), Ts − Te > −60.

Example 2. Let us expand the story from example 1 by new information: ‘John
prefers to come to work before 9am’. We add new constant ′time0′ to Cr of Σ
which denotes the start time of the day, regular atom ‘late’ which is true when
John is late and constrained variable Tt for Dc. Time 9am in our representation
is mapped to 540th minute. We expand example 1 by the following rules:

% Unless John is late, he comes to work before 9am
re : ← at(time0, Tt), at(end, Te), ¬late, Te − Tt > 540
% Normally, John is not late
rf : ¬late ← not late
% On some rare occasions he might be late, which is encoded by a cr-rule
rg : late

+←
In this paper, we study an instance AC0 of V(C), where C consists of constraints
of type X − Y > K, where X, Y are variables and K is a number. Examples 1
and 2 are examples of AC0 programs.

2.2 Semantics

We denote the sets of r-rules, cr-rules and c-rules in Π by Πr, Πcr and Πc

respectively. A rule r of 〈Π, Σ〉 will be called r-ground if regular terms in r are
ground. A program is called r-ground if all its rules are r-ground. A rule rg is
called a ground instance of a rule r if it is obtained from r by: (1). replacing
variables by ground terms of respective sorts; (2). replacing the remaining terms
by their values. For example, 3+4 will be replaced by 7. The program ground(Π)
with all ground instances of all rules in Π is called the ground instance of Π .
Obviously ground(Π) is an r-ground program.

We first define semantics for programs without cr-rules. For the definition, we
use the term asp answer set to refer to the definition of answer sets in answer
set prolog [9].

Integrating Answer Set Reasoning with Constraint Solving Techniques 19

Definition 3 [answer set 1]. Given a program (Σ, Π), where Π contains no
cr-rules, let X be a set of ground m-atoms such that for every predicate p ∈ Pm

and every ground r-term tr, there is exactly one c-term tc such that p(t̄r, t̄c) ∈ X.
A set S of ground atoms over Σ is an answer set of Π if S is an asp answer set
of ground(Π) ∪X ∪Mc.

Example 3. Consider Example 1 and let X = {at(start, 430), at(end, 465)}. The
set S = {by car, at(start, 430), at(end, 465)}∪Mc is an asp answer set of ground
(Π)∪X∪Mc and therefore is an answer set of Π . According to S, John starts to
travel by car at 7:10am and reaches work at 7:45am. Of course there are other
answer sets where John travels by car and his start and end times differ but
satisfy given constraints. There are also answer sets where John travels by bus.

Now we give the semantics for programs with cr-rules. By α(r), we denote a
regular rule obtained from a cr-rule r by replacing +← by ←; α is expanded in
a standard way to a set R of cr-rules. Recall that according to [6], a minimal
(with respect to set theoretic inclusion) collection R of cr-rules of Π such that
Πr∪Πc∪α(R) is consistent (i.e. has an answer set) is called an abductive support
of Π .

Definition 4 [answer set 2]. A set S is called an answer set of Π if it is an
asp answer set of program Πr ∪Πc ∪ α(R) for some abductive support R of Π.

Example 4. Consider Example 2 and let X = {at(start, 430), at(end, 465)}. The
set S = {by car,¬late, at(time0, 0), at(start, 430), at(end, 465)} ∪ Mc is an
answer set of ground(Π)∪X∪Mc and therefore is an answer set of Π . According
to S, John starts by car at 7:10am and reaches work at 7:45am and is not late.
The cr-rule was not applied and α(∅) = ∅.

3 ADsolver

In this section we describe the algorithm which takes a program 〈Σ, Π〉 of AC0

as input and returns a simplified answer set A ∪X (regular and mixed atoms)
such that M = A ∪ X ∪Mc is an answer set of Π where Mc is the intended
interpretation of c-predicates. The algorithm works for a class of AC0 programs
satisfying the following syntax restrictions:

– There are no disjunctions in the head of rules.
– Every c-rule of the program contains exactly one c-literal in the body.

ADsolver consists of a partial grounder Pgroundd and an inference engine
ADengine. Given a AC0 program Π , ADsolver first calls Pgroundd to ground
r-terms of Π , to get an r-ground program, Pd(Π). The ADengine combines con-
straint solving techniques with answer set reasoning and abduction techniques
to compute simplified answer sets of Pd(Π).

20 V.S. Mellarkod and M. Gelfond

3.1 Pgroundd

Given a AC0 program Π , Pgroundd grounds the r-variables in Π and outputs
a r-ground program Pd(Π). The implementation of Pgroundd uses intelligent
grounder lparse [16]. To allow for partial grounding by lparse, we need inter-
mediate transformations before and after grounding by lparse. The transfor-
mations ensure that c-variables are not ground and rules containing m-atoms
are not removed by lparse. The transformations remove and store c-variables,
m-atoms and c-atoms from Π before grounding and then restore them back after
grounding.

Example 5. Let a1 and a2 be two actions. For representing the condition “a1
should occur 30 minutes before a2”, we begin by defining a signature. Σ = {Cr =
{{a1, a2}, {1, 2}}, Vr = {S}, Pr = {o}, Pm = {at}, Cc = {Dc = {0..1440}, Rc =
{−1440..1440}}, Vc = {T1, T2}, Fc = {−}, Pc = {>}} and Π be the following
rules:

step(1..2).
% only one action can occur at each step
o(a1, S) :- step(S), not o(a2, S).
o(a2, S) :- step(S), not o(a1, S).
% an action can occur at most once
:- step(S1), step(S2), o(a1, S1), o(a1, S2), S1 != S2.
:- step(S1), step(S2), o(a2, S1), o(a2, S2), S1 != S2.
% define ‘time’ as a csort, and ‘at’ as a mixed predicate
#csort time(0..1440).
#mixed at(step,time).
% time should be increasingly assigned to steps
:- step(S1), step(S2), at(S1,T1), at(S2,T2), S1<S2, T1-T2 > 0.
% a1 should occur 30 minutes before a2
:- step(S1), step(S2), o(a1, S1), o(a2, S2),

at(S1, T1), at(S2, T2), T1 - T2 > -30.

We get Pd(Π) as follows:

step(1). step(2).
o(a1, 1) :- not o(a2, 1). o(a1, 2) :- not o(a2, 2).
o(a2, 1) :- not o(a1, 1). o(a2, 2) :- not o(a1, 2).
:- o(a1, 1), o(a1, 2). :- o(a2, 1), o(a2, 2).
#csort time(0..1440).
:- at(1, V1), at(2, V2), V1 - V2 > 0.
:- o(a1, 1), o(a2, 2), at(1, V1), at(2, V2), V1 - V2 > -30.
:- o(a1, 2), o(a2, 1), at(2, V2), at(1, V1), V2 - V1 > -30.

Note that V 1 and V 2 are constraint variables with domain [0..1440].

3.2 ADengine

The ADengine integrates a standard CR-Prolog solver and a difference con-
straint solver. CR-Prolog solver consists of a meta layer and computes answer

Integrating Answer Set Reasoning with Constraint Solving Techniques 21

sets by using an underlying ASP inference engine. For ADengine, we use Surya
[10] as the underlying inference engine.

Suppose there are no c-rules in a program Π , then Π is a CR-Prolog program.
Typical CR-Prolog solvers available now, compute answer sets of Π as follows:

1. a meta-layer selects a minimal set R of cr-rules of Π called a candidate
abductive support of Π ;

2. an ASP inference engine is used to check program Πr ∪α(R) for consistency
and compute an answer set.

3. if an answer set is found at step (2) then R is an abductive support with
respect to Π and the answer set computed is an answer set of Π and is
returned2; otherwise the solver loops back to step(1) to find another minimal
set R not tried so far.

To compute answer sets of AC0 programs, we modify the solver to accept c-rules;
and then change step(2) of the algorithm. Given a AC0 program Π , we modify
the underlying inference engine Surya to compute answer sets of Πr∪Πc∪α(R).
Note that the program Πr∪Πc∪α(R) does not contain cr-rules but only r-rules
and c-rules.
ADengine integrates a form of abductive reasoning using the meta-layer with

answer set reasoning and constraint solving of the underlying inference engine.
Surya has been modified to tightly couple with a difference constraint solver (for
constraint solving). The algorithm presented in [7] uses constraint solving tech-
niques for checking consistency of constraints with respect to a partial model
computed. Our algorithm uses constraint solving techniques for checking con-
sistency and for computing consequences with respect to a given program and
a partial model computed. The solver implemented for constraint solving is an
incremental difference constraint solver that computes solutions of a set of con-
straints (constraint store) using a previous solution and changes to the constraint
store. This method is more efficient than computing solutions from scratch.

To our knowledge this is the first tightly coupled solver for integrating an-
swer set reasoning and constraint solving to compute answer sets from partially
ground programs. In the next section, we show that the solver can efficiently
compute answer sets for a large complex system and it makes it possible to
solve problems which could not be solved by pure ASP, CR-Prolog or constraint
solvers. ADsolver is available at [1].

4 Representing Knowledge in AC0

Normally, a variable with a large domain is viewed as a constraint variable.
Those with small domains are regular variables. We select mixed predicates as
those which contain both these variables. A limitation to select mixed predicates
is to note that these predicates can be used only in body of denials. With re-
spect to AC0, constraints of the form X − Y > K are only allowed. Therefore
2 This algorithm is a simplification of the actual algorithm [5], which requires addi-

tional checking due to dynamic and special preference rules allowed in the language.

22 V.S. Mellarkod and M. Gelfond

knowledge represented by constraint variables in mixed predicates are limited to
these constraints. Interestingly, these constraints are used widely in constraint
programming [13,12,14].
AC0 is good for representing planning and scheduling problems. Given a task

of executing n actions and time restrictions on their executions, a scheduling
problem consists of finding times T1, . . . , Tn such that action ‘ai occurs at time
Ti’ and satisfies all the time restrictions. The timing restrictions can be tem-
poral distance constraints between any two actions. Such constraints can be
represented in AC0 as follows. Let a1, . . . , an be n actions and S1, . . . , Sn be
variables in domain [1..n]. The r-atom occurs(ai, Si) is read as, “action ai oc-
curs at step Si”. The step Si is a number and denotes a time point Ti and is
represented by an m-atom at(Si, Ti). Atom at(S, T) is read as ‘step S occurs at
time T ’. The domain of a step S (r-variable) is comparatively smaller to domain
of a time variable T (c-variable).

When actions have durations, the scheduling problem finds the start and
end time points of actions such that all timing restrictions are satisfied. One
method of representing constraints on action durations in AC0 is as follows. Let
a1, . . . , an be actions and S1, . . . , Sn be variables from the domain [1..n]. The
r-atom occurs(ai, Si) is read as, “action ai occurs at step Si”. The variable Si

is a number which denotes a time interval [Tsi, Tei]. The time interval of step
Si is represented by two m-atoms at(Si, start, Tsi) and at(Si, end, Tei). Atom
at(S, start, T) is read as ‘step S starts at T’. We can write temporal constraints
using the c-variables Tsi and Tei.

Example 6 [[14] Breakfast problem]. We have a scheduling problem, “Prepare
coffee and toast. Have them ready within 2 minutes of each other. Brew coffee for
3-5 minutes; toast bread for 2-4 minutes.” We start by defining signature, Σ =
{Cr = { start, end, brew, toast, Sc = [1..2] }, Pr = {step, occurs}, Cc = {Dc =
[0..1439], Rc = [−1439..1439]}, Vc = {T1, T2}, Fc = {−}, Pc = {>}, Pm = {at}}.
Constants “brew, toast” represents actions ‘brewing coffee’ and ‘toasting bread’.
To solve this, we first represent constraints and then we have a small planning
module to represent action ai occurs at some time step Si. The constraints are
as follows.

% Brew coffee for 3 to 5 minutes is represented using two c-rules
← occurs(brew, S), at(S, start, T1), at(S, end, T2), T2 − T1 > 5.
← occurs(brew, S), at(S, start, T1), at(S, end, T2), T1 − T2 > −3.

% Toast bread for 2 to 4 minutes is represented by two c-rules
← occurs(toast, S), at(S, start, T1), at(S, end, T2), T2 − T1 > 4.
← occurs(toast, S), at(S, start, T1), at(S, end, T2), T1 − T2 > −2.

% Coffee and bread should be ready between 2 minutes of each other
← occurs(brew, S1), occurs(toast, S2), at(S1, end, T1),

at(S2, end, T2), T2 − T1 > 2.
← occurs(brew, S1), occurs(toast, S2), at(S1, end, T1),

at(S2, end, T2), T1 − T2 > −2.
% Start time of step 1 is before step 2
← at(S1, start, T1), at(S2, start, T2), S1 < S2, T1 − T2 > −1.

Integrating Answer Set Reasoning with Constraint Solving Techniques 23

% A simple planning module to represent occurrence of actions:
step(1..2).
occurs(brew, S) or occurs(toast, S) ← step(S).
← action(A), occurs(A, S1), occurs(A, S2), S1 �= S2.

The first c-rule is read as: ‘If brewing coffee occurs at step S, then duration
between start and end of S cannot be more than 5 minutes’. The second c-rule
says that ‘start and end times for S cannot be less than 3 minutes. The c-atom is
written as T1−T2 > −3 instead of T2−T1 < 3 as the implementation allows only
constraints of the form X −Y > K. The disjunctions in the head of the rules of
the above program can be eliminated using non-disjunctive rules. A solution to
the above breakfast scheduling problem can be found by computing answer sets
of the program using ADsolver . A solution would be to start brewing coffee at
0th minute and end at 3rd minute; start toasting bread at 2nd minute and end at
4th minute. This solution can be extracted from an answer set {occurs(brew, 1),
occurs(toast, 2), at(1, start, 0), at(1, end, 3), at(2, start, 2), at(2, end, 4)} ∪Mc.

Suppose we would like to schedule an action a such that it occurs either
between 3am and 5am or between 7am and 8am. To represent this restriction,
we would require a constraint of the form, if action ‘a’ occurs at step S and step
S occurs at time T , then T cannot be outside intervals [3-5] or [7-8]. We cannot
represent this directly in AC0. Instead we introduce two r-atoms int1 and int2
to represent intervals [3-5] and [7-8] respectively. The r-atom int1 denotes that
action a occurs in interval [3-5]. We write a disjunction on inti to choose the
interval and then use inti to write the constraints. The following example shows
the representation of the constraint.

Example 7. “Action a should be performed in between intervals [3-5] am or [7-8]
am”. Let r-atoms int1 and int2 represent intervals [3-5] and [7-8] respectively
and inti is true when action a occurs in interval inti. To keep it simple, let us
suppose that action a occurs at some step say 1. We need to assign time for
this step. Atom at(0, T) denotes time of step 0 and represents start time for our
problem 12 am.

occurs(a, 1).
% action ‘a’ occurs in interval int1 or int2

int1 or int2.
% ‘If a occurs at step S and int1 is true, then S should be between [3-5]’, is
encoded using two c-rules
← int1, occurs(a, S), at(0, T1), at(S, T2), T1 − T2 > −3
← int1, occurs(a, S), at(0, T1), at(S, T2), T2 − T1 > 5

% ‘If a occurs at step S and int2 is true, then S should be between [7-8]’, is
encoded using two c-rules
← int2, occurs(a, S), at(0, T1), at(S, T2), T1 − T2 > −7
← int2, occurs(a, S), at(0, T1), at(S, T2), T2 − T1 > 8

An answer set for this program would be {occurs(a, 1), int2, at(0, 0), at(1, 7)}∪
Mc, where a occurs at 7 am. The following example is from [8], we show that

24 V.S. Mellarkod and M. Gelfond

we can represent the problem and answer some of the questions asked in the
example. Though, syntax of AC0 does not allow choice rules and cardinality
constraints [11], ADsolver built on top of lparse and Surya allows these type
of rules in its input language. We use choice rules in the following example.

Example 8 [[8] Carpool]. John goes to work either by car (30-40 mins), or by
bus (at least 60 mins). Fred goes to work either by car (20-30 mins), or in a car
pool (40-50 mins). Today John left home between 7:10 and 7:20, and Fred arrived
between 8:00 and 8:10. We also know that John arrived at work about 10-20 mins
after Fred left home. We wish to answer queries such as: “Is the information in
the story consistent?”,“Is it possible that John took the bus, and Fred used the
carpool?”, “What are the possible times at which Fred left home?”.

%% John goes to work either by car or by bus. (a choice rule)
1{ j_by_car, j_by_bus }1.
%% Fred goes to work either in car or by car pool
1{ f_by_car, f_by_cpool }1.

%% define ’time’ as csort and ’at’ as a mixed predicate
#csort time(0..1440).
timepoint(start_time; start_john; end_john; start_fred; end_fred).
#mixed at(timepoint, time).

%% "It takes John 30 to 40 minutes by car"
:- j_by_car, at(start_john,T1), at(end_john,T2), T2 - T1 > 40.
:- j_by_car, at(start_john,T1), at(end_john,T2), T1 - T2 >-30.

%% "It takes John atleast 60 minutes by bus"
:- j_by_bus, at(start_john,T1), at(end_john,T2), T1 - T2 >-60.

%% We view the start time as 7am, that is 0 minutes = 7am
%% Today John left home between 7:10 and 7:20
:- at(start_john,T), at(start_time,T0), T0 - T > -10.
:- at(start_john,T), at(start_time,T0), T - T0 > 20.

The other informations in the example are represented by similar c-rules. Now
let us look at answering each of the questions in the problem.

Question (1) Is the information in story consistent?
To answer this question, we find answer sets of the program.
Answer Set: j_by_car f_by_cpool at(start_fred,20) at(end_fred,60)

at(start_time,0) at(start_john,10) at(end_john,40)

The above answer set corresponds to John using the car and Fred using the car
pool. John starts at 7:10 am and reaches at 7:40 am. Fred starts at 7:20 am
and reaches at 8:00 am. The information is consistent since the program has an
answer set. The time taken by ADsolver to find an answer set was 0.065 secs of
which 0.018 secs was used by Pgroundd.

Integrating Answer Set Reasoning with Constraint Solving Techniques 25

Question(2) Is it possible that John took the bus and Fred
used carpool? To answer this question, we add the following
knowledge to our program and compute answer sets.
j_by_bus.
f_by_cpool.
There are no answer sets for this new program.

Therefore, according to the story, it is not possible for John to take a bus and
Fred to use a carpool and have the story consistent. The time taken by ADsolver
was 0.029 secs of which Pgroundd took 0.018 secs.

Question (3) What are the possible times that Fred left home?
To answer this question, we need to find the interval of time
when Fred can leave home and still have the story consistent.

This answer cannot be found using ADsolver , as the underlying constraint solver
built cannot answer these type of interval questions.

The temporal constraints from the above problems are examples of simple and
disjunctive temporal constraints [8]. Using cr-rules in AC0 we can represent im-
portant information like, “an event e may happen but it is very rare”. Such
information is very useful in default reasoning. Combining such information to-
gether with c-rules allows us to represent qualitative soft constraints [15] like,
“an event e may happen but it is very rare; if event e happens then ignore con-
straint c”. The following example is an extension of Example 8 and shows the
representation of qualitative soft temporal constraints.

Example 9. Consider example 8, we remove information that “John arrived at
work about 10-20 mins after Fred left home” and extend the story as follows: It
is desirable for Fred to arrive atleast 20 mins before John.

%% Fred desires to arrive atleast 20 mins before John.
:- at(end_fred,T1), at(end_john,T2), not is_late, T1-T2 >-20.
%% CR-rule r1: We may possibly believe that Fred is late
r1: is_late +-.

For the newly added information, we get two models where Fred arrives before
John in each of them.

Answer set(1):j_by_bus f_by_car at(end_john,100) at(end_fred,60)
at(start_time,0) at(start_john,20) at(start_fred,30)

Answer set(2):j_by_bus f_by_cpool at(end_john,80) at(end_fred,60)
at(start_time,0) at(start_john,20) at(start_fred,20)

To compute the two models,ADsolver took 0.064 seconds of which 0.019 seconds
were used for grounding and loading. Now we would like to expand our story,
“We come to know that Fred’s car is broken and therefore, he cannot use it”.
We add the following rule to the program.

:- f_by_car.

26 V.S. Mellarkod and M. Gelfond

For the new program, we get one model where John travels by bus and Fred
uses the carpool and still reaches before John.

Answer set:j_by_bus f_by_cpool at(end_john,80) at(end_fred,60)
at(start_time,0) at(start_john,20) at(start_fred,20)

ADsolver took 0.053 seconds to compute the model. Suppose we know that John
used his car today. Will Fred arrive atleast 20 mins before John as desired? For
this, we add the following rule to the program.

j_by_car.

There is no model where Fred arrives 20 minutes before John and the cr-rule
was fired to give the following answer set.

Answer set: j_by_car f_by_cpool is_late at(start_fred,20)
at(end_fred,60) at(start_time,0) at(start_john,20) at(end_john,60)

Fred is late and cannot arrive 20 minutes before John as desired. ADsolver took
0.052 seconds to compute the model.

The examples show that AC0 allows a natural representation of simple tempo-
ral constraints, disjunctive temporal constraints and qualitative soft constraints.
The implemented solver is faster than a standard ASP solver when domains of
constraint variables are large. The language of CR-Prolog also allows preferences
on the cr-rules [4]. Given two cr-rules r1 and r2, the statement prefer(r1, r2) al-
lows preference to cr-rule r1 when compared to cr-rule r2. CR-Prolog allows static
and dynamic preferences. The language AC0 does not allow preferences but AC0

syntax can be easily extended to allow CR-Prolog style preferences and the se-
mantics would be a natural extension of CR-Prolog. Though language AC0 does
not allow preferences, the solver ADsolver which is built using the meta layer of
CR-Prolog solver, allows preferences. So, we can express soft qualitative tempo-
ral constraints with preferences which is used in constraint programming [15].

Example 10. This example shows the representation of qualitative soft temporal
constraints with preferences. Let us use example 9. We remove information that
“John arrived at work about 10-20 mins after Fred left home and Fred arrived
between 8:00 and 8:10” and extend the story as follows: It is desirable for Fred to
arrive atleast 20 mins before John. If possible, Fred desires to start from home
after 7:30am. We also know that Fred’s car is broken and John used his car
today.

%% If possible, Fred desires to leave after 7:30am
:- at(start_time,T1), at(start_fred,T2), not start_early,

T1 - T2 > -30.
%% CR-rule r2: sometimes, Fred may need to start early.
r2: start_early +-.

The above rules along with other rules from examples 9 and 8 represent the
information in the story. We get two answer sets where cr-rules were used in
both.

Integrating Answer Set Reasoning with Constraint Solving Techniques 27

Answer set (1): j_by_car f_by_cpool is_late
at(start_john,20) at(start_fred,30)
at(end_john,60) at(end_fred,70) at(start_time,0)

Answer set (2): j_by_car f_by_cpool start_early
at(start_john,20) at(start_fred,0)
at(end_john,60) at(end_fred,40) at(start_time,0)

Now we add new preference information that “Fred prefers coming before John
than starting late from home”. we represent the preference as follows:

% Prefer starting early to reaching late
prefer(r2,r1).

Now, we get only one model:

Answer set: j_by_car f_by_cpool start_early
at(start_john,20) at(end_john,60)
at(start_fred,0) at(end_fred,40) at(start_time,0)

The other model is not preferred when compared to this one and therefore is not
returned. ADsolver computed the answer set in 0.13 seconds.

The above example clearly shows the use of preferences from CR-Prolog along
with c-rules gives a natural representation of qualitative soft constraints with
preferences. Similarly, we can use cr-rules, cr-preferences and c-rules together
to represent disjunctive soft temporal constraints and disjunctive soft temporal
constraints with preferences which are also useful for scheduling problems.

Another investigation we are concerned with is whether AC0 can be used for
complex planning and scheduling problems. Also, whether we can use ADsolver
to compute answer sets in realistic time for these problems. To test this, we have
used the system USA-Advisor[6] , a decision support system for the Reaction
Control System (RCS) of the Space Shuttle.

The RCS has primary responsibility for maneuvering the aircraft while it is in
space. It consists of fuel and oxidizer tanks, valves and other plumbing needed
to provide propellant to the maneuvering jets of the shuttle. It also includes
electronic circuitry: both to control the valves in the fuel lines and to prepare
the jets to receive firing commands. Overall the system is rather complex, on that
it includes 12 tanks, 44 jets, 66 valves, 33 switches, and around 160 computer
commands (computer-generated signals). The RCS can be viewed, in a simplified
form, as a directed graph whose nodes are tanks, jets and pipe junctions, and
whose arcs are labeled by valves. For a jet to be ready to fire, oxidizer and fuel
propellants need to flow through the nodes (tanks, junctions) and valves which
are open and reach the jet. A node is pressurized when fuel or oxidizer reaches
the node.

The system can be used for checking plans, planning and diagnosis. To test
our solver, we have expanded the system to allow explicit representation of time
to perform some scheduling. We use it to solve planning and scheduling tasks.
We will illustrate our extension by the following example.

28 V.S. Mellarkod and M. Gelfond

Example 11 [Planning and scheduling in USA-Advisor]. Assume that after
a node N gets pressurized it takes around 5 seconds for the oxidizer propellant to
get stabilized at N and 10 seconds for fuel propellant to get stabilized. Further,
we cannot open a valve V which links N1 to N2, (link(N1,N2,V)), until N1 has
been stabilized. We would like to assign real times to the time steps given in
the program such that this constraint is satisfied. Also, can we answer questions
like: can the whole manuver take less than 30 secs?

Σ = Σold ∪ {Pr = {otank, ftank, got opened, got pressurized}, Pm = {at},
Cc = {Dc = [0..400], Rc = [−400..400]}, Fc = {−}, Pc = {>}}. Atoms otank(X)
and ftank(X) denote that X is a oxidizer tank and fuel tank respectively. Fluent
got opened(V, S) is true when valve V was closed at step S−1 and got opened at
step S. Fluent got pressurized(N, X, S) is true when node N is not pressurized
at step S − 1 and is pressurized at step S by tank X . Atom at(S, T) is read
as ‘step S is performed at time T ’, where S is a regular variable with domain
0 to plan length; T is a constraint variable with domain [0..400] seconds. The
new program contains all rules from original advisor, and new rules describing
the scheduling constraints. The first rule is from USA-Advisor, followed by some
new rules. The second rule shows the connection between original program and
new one.

% Tank node N1 is pressurized by tank X if it is connected by an open valve to
a node which is pressurized by tank X of sub-system R

h(pressurized by(N1, X), S)← step(S), tank of(N1, R),
h(in state(V, open), S), link(N2, N1, V),
tank of(X, R), h(pressurized by(N2, X), S).

% node gets pressurized when it was not pressurized at S and pressurized at
S+1.

got pressurized(N, X, S + 1) ← link(N1, N, V), tank of(X, R),
not h(pressurized by(N, X), S),
h(pressurized by(N, X), S + 1).

% A valve V linking N1 to N2 cannot be opened unless N1 is stabilized.
% If N1 is pressurized by oxidizer tank, N1 takes 5 seconds to stabilize.
← link(N1, N2, V), got pressurized(N1, X, S1), S1 < S2, otank(X),

got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −5
% If N1 is pressurized by fuel tank, N1 takes 10 seconds to stabilize.
← link(N1, N2, V), got pressurized(N1, X, S1), S1 < S2, f tank(X),

got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −5
% time should be increasingly assigned to steps
← S1 < S2, at(S1, T1), at(S2, T2), T1 − T2 > −1

% The jets of a system should be ready to fire by 30 seconds
← system(R), goal(S, R), at(0, T1), at(S, T2), T2 − T1 > 30

ADsolver was tested using USA-Advisor extension example 11. We tested the
solver on 450 auto-generated instances. The files used were “rcs1, plan, heuristics,
problem-base” [3], an instance file and scheduling constraints file (see example
11). The files and instances can be found at [3]. Due to space limitations, timing
results of only 300 instances are shown in Figure 1. The instances of the left

Integrating Answer Set Reasoning with Constraint Solving Techniques 29

Fig. 1. ADsolver Timing Results on Planning and Scheduling in USA-Advisor

(right) figure are the first 50 instances from folder ‘instances/instances-auto /ins’
(instances/instances-auto /ins-4). Each instance is run to compute answer sets
to find plans of length n=3, n=4 and n=5. The timing results shown is the time
taken for ADsolver to compute a single answer set or return false to denote no
plan for the specified plan length (n) exists.

The results show that ADsolver could compute answer sets for most of the
instances tried in less than two minutes. There was one instance not shown in
the figure (from ins-4, n=4) that took around 3359 seconds to find that there
was no plan, this was the only instance that took so long. The number of rules
(partially ground) for instances with n=3 was approximately 95,000 rules. The

30 V.S. Mellarkod and M. Gelfond

domain of time variables was 0..400 seconds. The USA-Advisor example 11 can
be transformed to a regular ASP program. ASP solvers [10,11,6] were not able
to compute answer sets, the grounder lparse they use returned a malloc error
because of huge memory requirements.

5 Conclusions

This paper introduces a collection V(C) of languages parameterized over a class
C of constraints. We study an instance AC0 of the resulting language where C
is a collection of constraints of the form X − Y > k. We design and implement
an algorithm for computing the answer sets of a class of AC0 programs. The
algorithm computes answer sets from partial ground programs and tightly cou-
ples answer set reasoning mechanisms with constraint solving techniques. This
makes it possible to declaratively solve problems which could not be solved by
pure ASP or by pure constraint solvers. The use of the language and efficiency
of the solver is demonstrated.

Acknowledgments

This work was partially supported by ARDA grant ASU06C-0143 and NASA
grant NASA-NNG05GP48G. The authors wish to thank Marcello Balduccini,
and Yuan-Lin Zhang for useful discussions on this subject.

References

1. Adsolver, http://www.cs.ttu.edu/∼mellarko/adsolver.html
2. GNU Prolog, http://www.gprolog.org
3. Rcs, http://www.krlab.cs.ttu.edu/Software/Download/rcs/
4. Balduccini, M.: Answer Set Based Design of Highly Autonomous, Rational Agents.

PhD thesis, Texas Tech University (December, 2005)
5. Balduccini, M.: CR-models: An inference engine for CR-prolog. In: Logic Program-

ming and Nonmonotonic Reasoning (May, 2007)
6. Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge

systems. Annals of Mathematics and Artificial Intelligence (2006)
7. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and

constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 52–66. Springer, Heidelberg (2005)

8. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49, 61–95 (1991)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP-1988, pp. 1070–1080 (1988)

10. Veena, S.: Mellarkod. Optimizing the computation of stable models using merged
rules. Master’s thesis, Texas Tech University (May, 2002)

11. Niemela, I., Simons, P.: Extending the Smodels System with Cardinality and
Weight Constraints. In: Logic-Based Artificial Intelligence, pp. 491–521. Kluwer
Academic Publishers, Dordrecht (2000)

http://www.cs.ttu.edu/~mellarko/adsolver.html
http://www.gprolog.org
http://www.krlab.cs.ttu.edu/Software/Download/rcs/

Integrating Answer Set Reasoning with Constraint Solving Techniques 31

12. Pollack, M.E., et al.: Pearl: A mobile robotic assistant for the elderly. In: AAAI
Workshop on Automation as Eldercare (August, 2002)

13. Pollack, M.E., et al.: Autominder: An intelligent cognitive orthotic system for peo-
ple with memory impairment. Robotics and Autonomous Systems 44(3-4), 273–282
(2003)

14. Pollack, M.E., Muscettola, N.: Temporal and resource reasoning for planning,
scheduling and execution. In: Tutorial Forum Notes, AAAI 2006 (July, 2006)

15. Rossi, F., Sperduti, A., Venable, K., Khatib, L., Morris, P., Morris, R.: Learning
and solving soft temporal constraints: An experimental study (2002)

16. Syrjanen, T.: Implementation of logical grounding for logic programs with sta-
ble model semantics. Technical Report 18, Digital Systems Laboratory, Helsinki
University of Technology (1998)

Optimizing Compilation of CHR

with Rule Priorities

Leslie De Koninck1,�, Peter J. Stuckey2, and Gregory J. Duck2

1 Department of Computer Science, K.U.Leuven, Belgium
Leslie.DeKoninck@cs.kuleuven.be

2 NICTA Victoria Laboratory
University of Melbourne, 3010, Australia

{pjs,gjd}@cs.mu.oz.au

Abstract. Constraint Handling Rules were recently extended with user-
definable rule priorities. This paper shows how this extended language
can be efficiently compiled into the underlying host language. It extends
previous work by supporting rules with dynamic priorities and by intro-
ducing various optimizations. The effects of the optimizations are empiri-
cally evaluated and the new compiler is compared with the state-of-the-art
K.U.Leuven CHR system.

1 Introduction

Constraint Handling Rules (CHR) [7] is a rule based language, originally de-
signed for the implementation of constraint programming systems, but also in-
creasingly used as a general purpose programming language [11,15]. CHR is very
flexible with respect to the specification of program logic, but it lacks high-level
facilities for execution control. In particular, the control flow is most often fixed
by the call-stack based refined operational semantics of CHR [5]. In [2], CHR
is extended with user-definable rule priorities. This extended language, called
CHRrp, supports more high-level and flexible execution control than previously
available while retaining the expressive power needed for the implementation of
general purpose algorithms. An example of CHR with rule priorities is:

Example 1 (Less-or-Equal). The less-or-equal (leq) program is a classic CHR
example. It implements a less-than-or-equal constraint by eventually translating
it into equality constraints. Below is a CHRrp version of the leq program.

1 :: reflexivity @ leq(X,X) <=> true.

1 :: antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.

1 :: idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

2 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

� Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 32–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimizing Compilation of CHR with Rule Priorities 33

The first rule has priority 1 (before ::) and name reflexivity (before @).
It is a simplification rule that states that any constraint of the form leq(a,a)
should be “simplified” to (i.e. replaced by) true. The second rule antisymmetry
states that two constraints leq(a,b) and leq(b,a) should be replaced with a = b,
constraining the arguments to be equal. The third rule is a simpagation rule
that says that given two constraints of the form leq(a,b) we should replace the
second one (after the \) by true. The fourth rule is a propagation rule, which
says given constraints leq(a,b) and leq(b,c) we should add a new constraint
leq(a,c) without deleting anything. We have given the transitivity rule a lower
priority (2), because we should only apply it if other rules do not apply. ��
Dynamic rule priorities allow the priority of a rule to depend on the variables
occurring on the left hand side of the rule.

Example 2 (Dijkstra’s Shortest Path). Dijkstra’s single source shortest path al-
gorithm can be implemented in CHRrp as follows:

1 :: source(V) ==> dist(V,0).

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

The input consists of a set of directed weighted edges, represented as edge/3
constraints where the first and last arguments respectively denote the begin and
end nodes, and the middle argument represents the weight. The source node
is given by the source/1 constraint. The first rule initiates the algorithm by
creating the distance to the source node. The second rule introduces a guard D1
=< D2 which must hold before the rule can fire. It ensures only the shortest path
to node V is kept in the store. The last rule has a dynamic priority that orders
the updates of distances as required by Dijkstra’s algorithm. ��
In the paper defining CHRrp [2], its theoretical operational semantics as well as
an implementation based on a source-to-source transformation were presented.
In this paper, we show how CHRrp programs can be efficiently compiled into the
host language. We present the compilation process based on a refined version
of the CHRrp operational semantics, which is similar in concept to the refined
operational semantics of CHR [5]. This semantics requires that every active
constraint determines the priorities of all the rules in which it may participate.
The compilation of rules with a dynamic priority is therefore handled by first
applying a pseudo code source-to-source transformation which ensures that this
condition holds. Next, it is shown how the generated code can be made more
efficient by introducing optimizations that prevent unnecessary indexing and
operations on the schedule. These optimizations are evaluated on benchmarks
and the optimized system’s performance is compared (with respect to equivalent
programs in regular CHR) with the state-of-the-art K.U.Leuven CHR system [13]
as well as with the result of the source-to-source transformation presented in [2].

This paper presents the first implementation of CHRrp with dynamic priori-
ties. It is about an order of magnitude faster than the one of [2] which is limited
to programs with static priorities only, and is already almost as fast as the highly

34 L. De Koninck, P.J. Stuckey, and G.J. Duck

optimized K.U.Leuven CHR system while offering a much more high level form
of execution control.1 The rest of this paper is organized as follows. Section 2
reviews the syntax and semantics of CHRrp. A basic compilation schema is pre-
sented in Section 3 and optimizations for this schema are given in Section 4. The
resulting system is evaluated in Section 5. We conclude in Section 6.

2 Preliminaries

This section reviews the syntax and semantics of Constraint Handling Rules with
Rule Priorities (CHRrp). For a more thorough introduction into CHR, see [7] or
[12]. See [2] for more information about CHRrp.

Syntax. A constraint c(t1, . . . , tn) is an atom of predicate c/n with ti a host
language value (e.g., a Herbrand term in Prolog) for 1 ≤ i ≤ n. There are
two types of constraints: built-in constraints and CHR constraints (also called
user-defined constraints). The CHR constraints are solved by the CHR program
whereas the built-in constraints are solved by an underlying constraint solver
(e.g., the Prolog unification algorithm).

There are three types of Constraint Handling Rules: simplification rules, prop-
agation rules and simpagation rules. They have the following form:

Simplification p :: r @ Hr ⇐⇒ g | B
Propagation p :: r @ Hk =⇒ g | B
Simpagation p :: r @ Hk \ Hr ⇐⇒ g | B

where p is the rule priority, r is the rule name, Hk and Hr are non-empty
sequences of CHR constraints and are called the heads of the rule. The rule
guard g is a sequence of built-in constraints and the rule body B is a sequence
of both CHR and built-in constraints. The rule priority is either a number in
which case the rule is called a static priority rule, or an arithmetic expression
whose variables appear in the heads Hk and/or Hr in which case the rule is
called a dynamic priority rule. We say that priority p is higher than priority p′

if p < p′. For simplicity, we sometimes assume priorities are integers and the
highest priority is 1. Finally, a program P is a set of CHR rules.

Operational Semantics. Operationally, CHR constraints have a multi-set se-
mantics. To distinguish between different occurrences of syntactically equal con-
straints, CHR constraints are extended with a unique identifier. An identified
CHR constraint is denoted by c#i with c a CHR constraint and i the identifier.
We write chr(c#i) = c and id(c#i) = i. We extend these to map sequences in
the obvious manner. We use ++ for sequence concatenation.

The operational semantics of CHRrp, called the priority semantics and de-
noted by ωp, is given in [2] as a state transition system, similar to the approach
of [5] for the theoretical and refined operational semantics of CHR. A CHR ex-
ecution state σ is represented as a tuple 〈G, S, B, T 〉n where G is the goal, a
1 When benchmarked on operationally equivalent programs.

Optimizing Compilation of CHR with Rule Priorities 35

Table 1. Transitions of ωp

1. Solve 〈{c}�G, S, B, T 〉n

ωp

�P 〈G, S, c∧B, T 〉n where c is a built-in constraint.

2. Introduce 〈{c} � G, S, B, T 〉n

ωp

�P 〈G, {c#n} ∪ S, B, T 〉n+1 where c is a CHR
constraint.

3. Apply 〈∅, H1∪H2∪S, B, T 〉n

ωp

�P 〈C, H1∪S, θ∧B, T ∪{t}〉n where P contains
a rule of priority p of the form

p :: r @ H ′
1\H ′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′
1), chr(H2) = θ(H ′

2),
D |= B → ∃̄B(θ∧g), θ(p) is a ground arithmetic expression and t = id(H1) ++
id(H2) ++ [r] /∈ T . Furthermore, no rule of priority p′ and substitution θ′

exists with θ′(p′) < θ(p) for which the above conditions hold.

multi-set of constraints to be solved; S is the CHR constraint store, a set of
identified CHR constraints; B is the built-in store, a conjunction of built-in con-
straints; T is the propagation history, a set of tuples denoting the rule instances
that have already fired; and n is the next free identifier, used to identify new CHR
constraints. The transitions of ωp are shown in Table 1. They are exhaustively
applied starting from the state 〈G, ∅, true, ∅〉1 with G the initial goal.

Example 3. And example derivation for the leq program given in Example 1
and initial goal G = {leq(A, B), leq(B, C), leq(B, A)} is shown below:

〈{leq(A, B), leq(B, C), leq(B, A)}, ∅, true, ∅〉1
Introduce

ωp

�P 〈{leq(B, C), leq(B, A)}, {leq(A, B)#1}, true, ∅〉2
Introduce

ωp

�P 〈{leq(B, A)}, {leq(A, B)#1, leq(B, C)#2}, true, ∅〉3
Introduce

ωp

�P 〈∅, {leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4
Apply antisymmetry θ = {X/A, Y/B} ωp

�P 〈{A = B}, {leq(B, C)#2}, true, ∅〉4
Solve

ωp

�P 〈∅, {leq(B, C)#2}, A = B, ∅〉4
For termination, the antisymmetry rule must fire before the transitivity rule. ��

3 Basic Compilation Schema

This section gives an overview of the basic compilation schema for CHRrp pro-
grams. First, in Section 3.1, we present a refinement of the ωp semantics that
follows the actual implementation more closely. This refinement, called the re-
fined priority semantics and denoted by ωrp, is based on the refined operational
semantics ωr of (regular) CHR and is thus also based on lazy matching and the
concept of active constraints. The ωrp semantics requires that each active con-
straint determines the actual (ground) priorities of all rules in which they may

36 L. De Koninck, P.J. Stuckey, and G.J. Duck

Table 2. Transitions of ωrp

1. Solve 〈[c|A], Q, S0 ∪ S1, B, T 〉n

ωrp

� P 〈A, Q′, S0 ∪ S1, c ∧ B, T 〉n where c is a
built-in constraint, vars(S0) ⊆ fixed(B) is the set of variables fixed by B,
and Q′ = Q ∪ {c#i @ p | c#i ∈ S1 ∧ c has an occurrence in a priority p rule}.
This reschedules constraints whose matches might be affected by c.

2. Schedule 〈[c|A], Q,S, B, T 〉n

ωrp

� P 〈A, Q′, {c#n} ∪ S, B,T 〉n+1 with c a CHR
constraint and Q′ = Q∪ {c#n @ p | c has an occurrence in a priority p rule}.

3. Activate 〈A, Q, S, B, T 〉n

ωrp

� P 〈[c#i : 1 @ p|A], Q\{c#i @ p}, S, B, T 〉n where
c#i @ p = find min(Q), and A = [c′#i′ : j′ @ p′|A′] with p < p′ or A = ε.

4. Drop 〈[c#i : j @ p|A], Q,S, B, T 〉n

ωrp

� P 〈A, Q,S, B, T 〉n if there is no jth

priority p occurrence of c in P .

5. Simplify 〈[c#i : j @ p|A], Q, {c#i} ∪ H1 ∪ H2 ∪ H3 ∪ S, B, T 〉n

ωrp

� P 〈C ++
A, Q,H1 ∪ S, θ ∧ B, T 〉n where the jth priority p occurrence of c is dj in rule

p′ :: r @ H ′
1\H ′

2, dj , H
′
3 ⇐⇒ g | C

and there exists a matching substitution θ such that c = θ(dj), p = θ(p′),
chr(H1) = θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3) and D |= B → ∃̄B(θ∧g).
This transition only applies if the Activate transition does not.

6. Propagate 〈[c#i : j @ p|A], Q, {c#i} ∪ H1 ∪ H2 ∪ H3 ∪ S, B, T 〉n

ωrp

� P 〈C ++
[c#i : j @ p | A], Q,H1 ∪S, θ∧B,T ∪{t}〉n where the jth priority p occurrence
of c is dj in

p′ :: r @ H ′
1, dj , H

′
2\H ′

3 ⇐⇒ g | C

and there exists a matching substitution θ such that c = θ(dj), p = θ(p′),
chr(H1) = θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3), D |= B → ∃̄B(θ ∧ g),
and t = id(H1) ++ [i] ++ id(H2) ++ [r] /∈ T . This transition only applies if
the Activate transition does not.

7. Default 〈[c#i : j @ p|A], Q,S, B, T 〉n

ωrp

� P 〈[c#i : j + 1 @ p|A], Q, S, B, T 〉n if
the current state cannot fire any other transition.

participate. In Section 3.2, we show how dynamic priority rules can be trans-
formed so that this property holds for all active constraints. Finally, Section 3.3
gives an abstract version of the code generated for each of the ωrp transitions.

3.1 The Refined Priority Semantics ωrp

The refined priority semantics ωrp is given as a state transition system. Its states
are represented by tuples of the form 〈A, Q, S, B, T 〉n, where S, B, T and n are
as in the ωp semantics, A is a sequence of constraints, called the activation stack,
and Q is a priority queue. In the ωrp semantics, constraints are scheduled for
activation at a given priority. By c#i : j @ p we denote the identified constraint
c#i being tried at its jth occurrence of fixed priority p. In what follows, the
priority queue is considered a set supporting the operation find min which returns
one of its highest priority elements.

Optimizing Compilation of CHR with Rule Priorities 37

The transitions of the ωrp semantics are shown in Table 2. The main differ-
ences compared to the ωr semantics are the following. Instead of adding new or
reactivated constraints to the activation stack, the Solve and Schedule2 tran-
sitions schedule them for activation, once for each priority at which they have
occurrences. The Activate transition activates the highest priority scheduled
constraint if it has a higher priority than the current active constraint (if any).
This transition only applies if the Solve and Schedule transitions are not ap-
plicable, i.e., after processing the initial goal or a rule body. Noteworthy is that
once a constraint is active at a given priority, it remains so at least until a rule
fires or it is made passive by the Drop transition. Hence we should only check
the priority queue for a higher priority scheduled constraint at these program
points. Again, the transitions are exhaustively applied starting from an initial
state 〈G, ∅, ∅, true, ∅〉1 with G the goal, given as a sequence.

Example 4. The ωrp state corresponding to the ωp state after the 3 Introduce
transitions in Example 3 is:3

〈[], {leq(A, B)#1@{1, 2}, leq(B, C)#2@{1, 2}, leq(B, A)#3@{1, 2}},
{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4

If leq(B, C)#2@1 is activated first then it finds no matching partners and is
eventually dropped. If leq(A, B)#1@1 is activated next, then we have

〈[leq(A, B)#1 : 1@1], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},
{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4

ωrp

�P (Default)
〈[leq(A, B)#1 : 2@1], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},

{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4
ωrp

�P (Simplify)
〈[A = B], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},

{leq(B, C)#2}, true, ∅〉4
ωrp

�P (Solve)
〈[], {leq(A, B)#1@2, leq(B, C)#2@{1, 2}, leq(B, A)#3@{1, 2}},

{leq(B, C)#2}, A = B, ∅〉4
This last transition reschedules the leq(B, C)#2 constraint at priorities 1 and 2.
None of the remaining constraints in the schedule lead to a rule firing. ��

3.2 Transforming Dynamic Priority Rules

In the description of the ωrp semantics, we have assumed that every constraint
knows the priorities of all rules in which it may participate. For rules with a
dynamic priority, this is obviously not always the case.

Example 5. Consider the rule

X+Y :: r @ a(X,Z) \ b(Y,Z), c(X,Y) <=> d(X).

2 The Schedule transition corresponds to the Activate transition in ωr.
3 We use the notation c#i @ {p1, . . . , pn} to denote {c#i @ p1, . . . , c#i @ pn}.

38 L. De Koninck, P.J. Stuckey, and G.J. Duck

In this rule the c/2 constraint with ground arguments X and Y knows the
priority of the rule, but neither the a/2 nor the b/2 constraints do. Given the
a/2 constraint, we need to combine (join) it with either the b/2 or c/2 constraint
to determine the actual priority. ��
In this section, we present a pseudo code source-to-source transformation to
transform a program such that this property is satisfied. In what follows, we
refer to the join order for a given constraint occurrence, which is the order
in which the partner constraints for this occurrence are retrieved (by nested
loops). We consider a join order Θ to be a permutation of {1, . . . , n} where n is
the number of heads of the rule. Now, consider a dynamic priority rule

p :: r @ C1, . . . , Ci\Ci+1, . . . , Cn ⇐⇒ g | B
an active head Cj , a join order Θ with Θ(1) = j and a number k, 1 ≤ k ≤ n such
that the first k heads, starting with Cj and following join order Θ, determine
the rule priority. We rewrite rule r as follows (for every j, 1 ≤ j ≤ n):

1 :: rj @ CΘ(1)#Id1, . . . , CΘ(k)#Idk =⇒
r-matchj(Id1, . . . , Idk, Vars) pragma passive(Id2), . . . , passive(Idk)

1 :: r′j @ r-matchj(Id1, . . . , Idk, Vars) ⇐⇒
ground(p) | r-match′

j(Id1, . . . , Idk, Vars)
p :: r′′j @ r-match′

j(Id1, . . . , Idk, Vars), CΘ(k+1)#Idk+1, . . . , CΘ(n)#Idn =⇒
alive(Id1), . . . , alive(Idk), g | kill(IdΘ−1(i+1)), . . . , kill(IdΘ−1(n)), B
pragma passive(Idk+1), . . . , passive(Idn),

history([IdΘ−1(1), . . . , IdΘ−1(n), r])

where Vars are the variables shared by the first k heads on the one hand, and the
remaining heads, the guard, the body and the priority expression on the other,
i.e., Vars =

(∪k
i=1vars(CΘ(i))

) ∩ ((∪n
i=k+1vars(CΘ(i))

) ∪ vars(g ∧B ∧ p)
)
. The

first rule generates a partial match that knows its priority once the necessary
arguments are ground (fixed). It runs at the highest possible value of the dy-
namic priority expression.4 The second rule ensures that the priority expression
is ground before the partial match is scheduled at its dynamic priority. The rule
runs at the same priority as the first one. Finally, the third rule extends the
partial match (with ground priority) into a full match. There we check whether
all constraints in the partial match are still alive (calls to alive/1), and delete
the removed heads (calls to kill/1). The pragma5 passive/1 denotes that a
given head is passive, i.e., no occurrence code is generated for it (see further in
Section 3.3). The pragma history/1 states the tuple layout for the propagation
history. All rule copies share the same history which ensures that each instance
of the original rule can fire only once.

Example 6. Given the rule r of Example 5 and join orders Θ1 = [1, 2, 3], Θ2 =
[2, 3, 1] and Θ3 = [3, 2, 1].6 Furthermore assuming we schedule at a dynamic
priority as soon as we know it, we generate the following rules:
4 We assume 1 is an upperbound. A tighter one can be used instead if such is known.
5 Most CHR systems support compiler directives by using the keyword pragma.
6 By slight abuse of syntax, we denote Θ(1) = θ1, . . . , Θ(n) = θn by Θ = [θ1, . . . , θn].

Optimizing Compilation of CHR with Rule Priorities 39

1 :: r1 @ a(X,Z) #Id1, b(Y,Z) #Id2 ==>

r-match1(Id1,Id2,X,Y) pragma passive(Id2).

1 :: r′1 @ r-match1(Id1,Id2,X,Y) <=>

ground(X+Y) | r-match′1(Id1,Id2,X,Y).

X+Y :: r′′1 @ r-match′1(Id1,Id2,X,Y), c(X,Y) #Id3 ==>

alive(Id1), alive(Id2) | kill(Id2), kill(Id3), d(X)

pragma passive(Id3), history([Id1,Id2,Id3],r).

1 :: r2 @ b(Y,Z) #Id1, c(X,Y) #Id2 ==>

r-match2(Id1,Id2,X,Y,Z) pragma passive(Id2).

1 :: r′2 @ r-match2(Id1,Id2,X,Y,Z) <=>

ground(X+Y) | r-match′2(Id1,Id2,X,Y,Z).

X+Y :: r′′2 @ r-match′2(Id1,Id2,X,Y,Z), a(X,Z) #Id3 ==>

alive(Id1), alive(Id2) | kill(Id1), kill(Id2), d(X)

pragma passive(Id3), history([Id3,Id1,Id2,r]).

1 :: r3 @ c(X,Y) #Id1 ==> r-match3(Id1,X,Y).

1 :: r′3 @ r-match3(Id1,X,Y) <=> ground(X+Y) | r-match′3(Id1,X,Y).

X+Y :: r′′3 @ r-match′3(Id1,X,Y), b(Y,Z) #Id2, a(X,Z) #Id3 ==> alive(Id1) |

kill(Id1), kill(Id2), d(X) pragma history([Id3,Id2,Id1,r]).

Note that since this is a simpagation rule, a propagation history is not necessary.
We only show it for illustrative purposes. ��
The proposed translation schema implements a form of eager matching: all
r-matchj constraints are generated eagerly at the highest priority before one
is fired. This approach resembles the TREAT matching algorithm [10]. Also
similar to the TREAT algorithm and unlike the RETE algorithm [6], we allow
different join orders for each active head.

3.3 Compilation

Now that we have shown how a program can be transformed such that each
constraint knows the priorities of all rules in which it may participate, we are
ready to present the compilation schema. The generated code follows the ωrp

semantics closely. In what follows, we assume the host language is Prolog, al-
though the compilation process easily translates to other host languages as well.
We note that the generated code presented in this section, closely resembles that
of regular CHR under the refined operational semantics, as described in for ex-
ample [12]. The differences correspond to those between ωr and ωrp as given in
Section 3.1.

CHR Constraints. Whenever a new CHR constraint is asserted, it is sched-
uled at all priorities at which it may fire (Schedule transition). Furthermore, it
is attached to its variables for the purpose of facilitating the Solve transition.
In Prolog this is done using attributed variables. The idea is similar to that of

40 L. De Koninck, P.J. Stuckey, and G.J. Duck

subscribing to event notifiers. Finally, the constraint is inserted into all indexes
on its arguments. Schematically, the generated code looks as follows:

c(X1,...,Xn) :- GenerateSuspension, S = Suspension,
schedule(p1,c/n_prio_p1_occ_1_1(S)),

...

schedule(pm,c/n_prio_pm_occ_1_1(S)),

AttachToVariables, InsertIntoIndexes.

The GenerateSuspension code creates a data structure (called the suspension
term in CHR terminology) for representing the constraint in the constraint store.
It has amongst others fields for the constraint identifier, its state (dead or alive),
its propagation history,7 its arguments, and pointers for index management. The
scheduling code consists of insertions of calls to the code for the first occurrence
of each priority pi (1 ≤ i ≤ m) into the priority queue. With respect to the usual
code for CHR constraints under the ωr semantics, we have added the schedule/2
calls and removed the call to the code of the first occurrence of the constraint.

Built-in Constraints. Built-in constraints are dealt with by the underlying
constraint solver, in this case the Prolog Herbrand solver. Whenever this solver
binds a variable to another variable or a term (during unification), a so-called
unification hook is called. In this hook, the CHR part of the Solve transition
is implemented. It consists of reattaching the affected constraints, updating the
indexes, and scheduling the affected constraints again at each priority for which
they have occurrences.

Occurrence Code. For each constraint occurrence, a separate predicate is
generated, implementing the Simplify and Propagate transitions. Its clauses
are shown below. The approach is very similar to how occurrences are compiled
under the refined operational semantics of CHR. The differences are that only the
occurrences of the same priority are linked, where occurrences with a dynamic
priority are assumed to run at different priorities, and the priority queue is
checked (check activation/1) after each rule firing. The code below is for the
jth priority p occurrence of the c/n constraint which is in an m-headed rule. The
indices r(1), . . . , r(i) refer to the removed heads.

c/n_prio_p_occ_j_1(S1) :-

(alive(S1), HeadMatch, LookupNext(S2)

-> c/n_prio_p_occ_j_2(S2,S1).

; c/n_prio_p_occ_j + 1_1(S1)

).

c/n_prio_p_occ_j_2([S2|S2],S1) :-

(alive(S2), S2 \= S1, HeadMatch, LookupNext(S3)

-> c/n_prio_p_occ_j_3(S3,S2,S2,S1)

7 We use a distributed propagation history, like in the K.U.Leuven CHR system [12].

Optimizing Compilation of CHR with Rule Priorities 41

; c/n_prio_p_occ_j_2(S2,S1)

).

c/n_prio_p_occ_j_2([],S1) :- c/n_prio_p_occ_j + 1_1(S1).

...

c/n_prio_p_occ_j_m([Sm|Sm],Sm−1,...,S1) :-

(alive(Sm), Sm \= S1, ..., Sm \= Sm−1,

HeadMatch, RemainingGuard, HistoryCheck
-> AddToHistory, kill(Sr(1)), ..., kill(Sr(i)),

Body, check_activation(p),
(alive(S1)

-> (...

... (alive(Sm−1)

-> c/n_prio_p_occ_j_m(Sm,...,S1)

; c/n_prio_p_occ_j_m − 1(Sm−1,...,S1)

)

...

; true

)

; c/n_prio_p_occ_j_m(Sm,Sm−1,...,S1)

).

c/n_prio_p_occ_j_m([],_,Sm−1,...,S1) :-

c/n_prio_p_occ_j_m − 1(Sm−1,...,S1).

The HeadMatch call checks whether the newly looked up head matches with
the rule and with the previous heads. A list of all candidates for the next
head is returned by LookupNext/1. RemainingGuard is the part of the guard
that has not already been tested by the HeadMatch calls. Propagation history
checking and extending is handled by respectively HistoryCheck and AddToHis-
tory. After having gone through all rule instances for the given occurrence, the
next occurrence is tried (Default) or the activation call returns (Drop). The
check activation/1 call in the occurrence code checks whether a constraint
occurrence is scheduled at a higher priority than the current one. It implements
the Activate transition.

4 Optimization

We now present the main optimizations implemented in the CHRrp compiler.
The proposed optimizations mainly improve constant factors, but might cause
complexity improvements for some programs as well. We start with optimiza-
tions that reduce the number of priority queue operations. We note that such
operations may have a higher than constant cost.

4.1 Reducing Priority Queue Operations

A first optimization consists of only scheduling the highest priority occurrence
of every new constraint. Only when the constraint has been activated at this

42 L. De Koninck, P.J. Stuckey, and G.J. Duck

priority and has gone through all of its occurrences without being deleted, it is
scheduled for the next priority. This is a simple extension of the continuation
based approach we already applied for constraint occurrences at equal priority.

In the basic compilation scheme, it is checked whether a higher priority sched-
uled constraint exists after each rule firing. In a number of cases, this is not
needed. If the active constraint is removed, it is popped from the top of the ac-
tivation stack and the activation check that caused it to be activated in the first
place, checks again to see if other constraints are ready for activation. So, since a
priority queue check will take place anyway, there is no need to do this twice. If
the body of a rule does not contain CHR constraints with a priority higher than
the current one, nor built-in constraints that can trigger any CHR constraints to
be scheduled at a higher priority, then after processing the rule body, the active
constraint remains active and we do not need to check the priority queue. We
denote the above optimizations by reduced activation checking.

Building further on this idea, we note that by analyzing the body, we can some-
times determine which constraint will be activated next. Instead of scheduling
it first and then checking the priority queue, we can activate it directly at its
highest priority. We call this inline activation. Inline activation is not limited to
one constraint: we can directly activate all constraints that have the same high-
est priority. Indeed, when the first of these constraints returns from activation,
the priority queue cannot contain any constraint scheduled at a higher priority,
because such a constraint would have been activated before returning.

Example 7. We illustrate the applicability of the proposed optimizations on the
leq program given in Example 1. The leq/2 constraint has 5 occurrences at
priority 1 and 2 at priority 2. New leq/2 constraints are only scheduled at pri-
ority 1. Only if an activated constraint has passed the 5th priority 1 occurrence,
it is scheduled at priority 2. For the first three priority 1 occurrences, as well
as for the removed occurrence in the idempotence rule, the active constraint is
removed and so there is no need to check the priority queue after firing the rule
body. Since the body of the remaining priority 1 occurrence equals true, no
higher priority constraint is scheduled and so we do not need to check the queue
here either. Finally, for the transitivity rule we have that the only constraint in
the body has a higher priority occurrence than the current active occurrence,
and so we can apply inline activation there. ��

4.2 Late Indexing

Similar to an optimization from regular CHR, we can often postpone storage of
constraints, reducing cost if the constraint is removed before these operations
are be applied. We extend the late storage concept of [9] to late indexing, where
we split up the task of storing a constraint into the subtasks of inserting it
into different indexes. The main idea is that an active constraint can only lose
activation to another constraint in rules of a higher priority. This implies that
when a constraint is active at a given current priority, it should only be stored
in those indexes that are used by higher priority rules.

Optimizing Compilation of CHR with Rule Priorities 43

Example 8. In the leq program (Example 1), the leq/2 constraints are indexed

– on the combination of both arguments (antisymmetry and idempotence);
– on the first argument and on the second argument (transitivity);
– on the constraint symbol for the purpose of showing the constraint store.

By using late indexing, new leq/2 constraints are not indexed at the moment
they are asserted, but only scheduled (only at priority 1). When an active leq/2
constraint ‘survives’ the 5th priority 1 occurrence, it is indexed on the combi-
nation of both arguments and rescheduled at priority 2. We can postpone the
indexing this long because only one constraint can be on the execution stack for
each priority and hence all partner constraints have either been indexed already,
or still need to be activated. Only after a reactivated leq/2 constraint has passed
the second priority 2 occurrence, it is stored in the remaining indexes. Note that
our approach potentially changes the execution order of the program, which can
sometimes contribute to changes in the running time (in either direction). ��

4.3 Passive Occurrences

In [4] we give a criterion to decide whether a given constraint occurrence can be
made passive. Passive occurrences allow us to avoid the overhead of looking up
partner constraints, and sometimes also the overhead related to scheduling and
indexing. Due to space considerations, we do not go into detail here.

5 Evaluation

Less-or-Equal. The leq benchmark uses the program of Example 1 and for
given n, the initial goal G = G1 ∪G2 with

G1 = {leq(X1,X2), . . . , leq(Xn−1, Xn)} ∧G2 = {leq(Xn,X1)}

From the goal G, a final state is derived in which X1 = X2 = . . . = Xn−1 = Xn.
In [2], it was shown that the benchmark scales better using priorities and

batch processing of the goal, because of the order in which constraints are acti-
vated (i.e., more recently added constraints are preferred). Using this order, the
leq(X1,Xn) constraint that causes the loop to be detected, is asserted after a
linear number of firings of the transitivity rule. Interestingly, by using the late
indexing optimization, we get a higher complexity because the necessary part-
ner constraints for the optimal firing order are not yet stored. However, when
we first assert subgoal G1, wait for a fixpoint, and then assert G2, then both the
versions with and without late indexing behave the same.

Optimizations. Table 3 shows benchmark results for various programs where
the effect on the runtime of each of the optimizations is measured. The runtimes
are given as percentages of the runtime of the unoptimized version for each
program. For the unoptimized and fully optimized versions, we also give times in

44 L. De Koninck, P.J. Stuckey, and G.J. Duck

Table 3. Benchmark results

LI IA RAC loop leq dijkstra union-find sudoku

24.54s 15.80s 40.43s 15.24s 13.44s√
88% 99% 98% 93% 98%√
73% 97% 97% 82% 99%√
46% 63% 97% 40% 112%√ √ √
8% 56% 92% 17% 109%√ √ √

2.03s 8.86s 37.14s 2.54s 14.63s

seconds. We used a Pentium IV, 2.8GHz running SWI-Prolog version 5.6.28. The
results do not include garbage collection times. The loop benchmark consists of
the following two rules (and does not rely on priorities):

1 :: a(X) <=> X > 0 | a(X-1). 1 :: a(0) <=> true.

and initial goal {a(220)}; the leq benchmark is the same as in the previous
subsection, with n = 80; the dijkstra benchmark uses the program of Example
2 with a graph of 215 nodes and 3·215 edges; the union-find benchmark is based
on the naive union-find program given in [15] and uses 212 random union/2
constraints over an equal number of elements (see also [4]). Finally, the sudoku
benchmark uses an adapted version of the Sudoku solver from the CHR website
[14] (see also [2]) and solves a puzzle in which initially 16 cells have a value. The
benchmarks are executed with the late indexing (LI), inline activation (IA) and
reduced activation checking (RAC) optimizations switched on and off.

The inline activation analysis assumes that dynamic priority rules run at the
highest possible value of the priority expression. It currently assumes this value
is 1, but a bounds analysis or a user declaration can give a tighter upperbound.
In the dijkstra and sudoku benchmarks, we have used a tight upperbound of 2
for the dynamic priority rules. The passive analysis applied to the union-find
benchmark cuts off another 2% and reduces the runtime with full optimization to
about 15% of the runtime without optimization. The late indexing optimization
can change the execution order. We have already shown how this affects the leq
benchmark. Similarly, it also affects the sudoku benchmark which has (amongst
others) 11% more rule firings, hence the increase in runtime. Moreover, late
indexing only reduces the amount of index insertions by 3% in this benchmark.

We also compare CHRrp against the K.U.Leuven CHR system under the ωr

semantics. For leq, loop and union-find, we execute the same code ignoring
priorities (though sometimes relying on rule order). For dijkstra and sudoku
the K.U.Leuven CHR code encodes equivalent behavior obtained using priorities
by other methods. Hence the rules are more involved. The leq benchmark takes
about 4% less using CHRrp and the union-find benchmark takes 53% more
time. The loop benchmark takes about 5.3 times longer in our system compared
to the code generated by the K.U.Leuven CHR system, which corresponds to a
pure Prolog loop. The main remaining overhead is the generation and destruction
of internal data structures, which is avoided in K.U.Leuven CHR. Comparison for

Optimizing Compilation of CHR with Rule Priorities 45

the sudoku benchmark is difficult because the search trees are different. In this
particular case, K.U.Leuven CHR is about 10% faster than our CHRrp system
(without late indexing), but also has 5% less rule firings.

For the dijkstra benchmark, we compared with the CHR program given
in [16].8 Our implementation runs about 2.4 times slower than the (regular)
CHR implementation, but it is also arguably more high level. Noteworthy is the
following optimization, implemented in [16] and reformulated here in terms of
our CHRrp implementation. The rule

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

removes the dist(V,D2) constraint which might still be scheduled at priority
D2 + 2. After firing the rule, the dist(V,D1) constraint is scheduled at priority
D1 + 2. Instead of first (lazily) deleting a scheduled item, and then inserting a
new one, the cheaper decrease key operation can be used instead (because D1 ≤
D2). Compared to an altered version of the original CHR implementation in
which this optimization is turned off, our code remains (only) 13% slower. The
results are for the described problem instances and vary somewhat over different
problem sizes. Nonetheless, the asymptotic time complexities are the same in
both CHR and CHRrp versions and so the results are sufficiently generalizable.

Finally, we compare to the source-to-source transformation given in [2]: the
leq benchmark runs about 4.7 times faster on our system; the loop benchmark
about 39 times, and the union-find benchmark about 19 times. The remaining
benchmarks could not run because they contain rules with a dynamic priority
which are not supported by the source-to-source transformation.

6 Concluding Remarks

This paper presents a compilation schema for CHRrp: CHR with rule priorities.
We have shown the feasibility of implementing rules with both static and dy-
namic rule priorities using a lazy matching approach, in contrast with the eager
matching as implemented by the RETE algorithm and derivatives. We have pro-
posed various ways to optimize the generated code and shown their effectiveness
on benchmarks. Our benchmark results furthermore indicate that our imple-
mentation already comes close to the state-of-the-art K.U.Leuven CHR system
(and sometimes even surpasses it), while offering a much more high level form of
execution control. Compared to the implementation given in [2], our system is
about an order of magnitude faster on the benchmarks. This work extends [2] by
introducing the refined priority semantics, offering support for dynamic priority
rules, presenting the first compiler for CHRrp, and by proposing several opti-
mizations for the generated code. The optimizations consist of both completely
new optimizations (those related to reducing priority queue operations), as well
as refinements of previously known optimizations for (regular) CHR (i.e., late
indexing and the passive analysis).
8 For a fair comparison, we use a combination of Fibonacci heaps for the dynamic

priorities, and an array for static priorities 1 and 2, as priority queue.

46 L. De Koninck, P.J. Stuckey, and G.J. Duck

Related Work. Rule priorities (sometimes called salience) are found in many
rule based languages, including production rule systems and active database sys-
tems. Priority based execution control is also found in many Constraint (Logic)
Programming systems. We refer to [2] for a deeper discussion. The implementa-
tion presented here is based on lazy matching and hence has the advantage of
low memory requirements compared to RETE style eager matching. In [8], a rule
based language with prioritized rules is presented, and an implementation based
on a form of eager matching is proposed. [1] shows this language easily trans-
lates into CHRrp. CHRrp goes beyond earlier priority based rewriting systems
by interacting with an underlying solver and supporting propagation rules.

Future Work. The late indexing and passive occurrence optimizations were
inspired by similar optimizations in the K.U.Leuven CHR system (and earlier
systems). Some other optimizations could easily be transferred to the CHRrp

compiler. The analyses implemented so far are very ad hoc and a more general
approach based on abstract interpretation could be worthwhile. Finally, we have
not taken advantage of some of the nondeterminism introduced by the ωp seman-
tics. In particular this concerns reordering or merging rules with equal priority.
An extension of the join ordering cost model of [3] could help us choose a more
optimal rule order within the boundaries imposed by the priorities.

References

1. De Koninck, L., Schrijvers, T., Demoen, B.: The correspondence between the Log-
ical Algorithms language and CHR. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 209–223. Springer, Heidelberg (2007)

2. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: 9th ACM SIGPLAN Symp. on Principles and Practice of Declarative Program-
ming, pp. 25–36 (2007)

3. De Koninck, L., Sneyers, J.: Join ordering for Constraint Handling Rules. In: 4th
Workshop on Constraint Handling Rules, pp. 107–121 (2007)

4. De Koninck, L., Stuckey, P.J., Duck, G.J.: Optimized compilation of CHRrp. Tech-
nical Report CW 499, K.U.Leuven, Belgium (2007)

5. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined op-
erational semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz, V.
(eds.) ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

6. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19(1), 17–37 (1982)

7. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Log. Pro-
gram. 37(1-3), 95–138 (1998)

8. Ganzinger, H., McAllester, D.A.: Logical algorithms. In: Stuckey, P.J. (ed.) ICLP
2002. LNCS, vol. 2401, pp. 209–223. Springer, Heidelberg (2002)

9. Holzbaur, C., Garćıa de la Banda, M., Stuckey, P.J., Duck, G.J.: Optimizing com-
pilation of Constraint Handling Rules in HAL. Theory and Practice of Logic Pro-
gramming: Special Issue on Constraint Handling Rules 5(4 & 5), 503–531 (2005)

10. Miranker, D.P.: TREAT: A better match algorithm for AI production system
matching. In: 6th National Conf. on Artificial Intelligence, pp. 42–47. AAAI Press,
Menlo Park (1987)

Optimizing Compilation of CHR with Rule Priorities 47

11. Morawietz, F.: Chart parsing and constraint programming. In: 18th Intl. Conf.
Computational Linguistics, pp. 551–557. Morgan Kaufmann, San Francisco (2000)

12. Schrijvers, T.: Analyses, Optimizations and Extensions of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Leuven, Belgium (2005)

13. Schrijvers, T., Demoen, B.: The K.U.Leuven CHR system: Implementation and
application. In: 1st Workshop on CHR, Selected Contributions, Ulmer Informatik-
Berichte 2004-01, pp. 1–5. Universität Ulm, Germany (2004)

14. Schrijvers, T., et al.: The Constraint Handling Rules home page (2007),
http://www.cs.kuleuven.be/∼dtai/projects/CHR/

15. Schrijvers, T., Frühwirth, T.: Optimal union-find in Constraint Handling Rules.
Theory and Practice of Logic Programming 6(1&2) (2006)

16. Sneyers, J., Schrijvers, T., Demoen, B.: Dijkstra’s algorithm with Fibonacci heaps:
An executable description in CHR. In: 20th Workshop on Logic Programming,
INFSYS Research Report 1843-06-02, pp. 182–191. TU Wien (2006)

http://www.cs.kuleuven.be/~dtai/projects/CHR/

Certified Exact Real Arithmetic Using

Co-induction in Arbitrary Integer Base

Nicolas Julien

INRIA Sophia Antipolis

Abstract. In this paper we describe some certified algorithms for exact
real arithmetic based on co-recursion. Our work is based on previous
experiences using redundant digits of base 2 but generalizes them using
arbitrary integer bases. The goal is to take benefit of fast native integer
computation. We extend a technique to compute converging series. We
use this technique to compute the product and the inverse. We describe
how we implement and certify our algorithms in the proof system Coq
and evaluate the efficiency of the library inside the prover.

1 Introduction

We built a library to describe computations on real numbers in a certified way.
This library can be used inside a theorem prover and it relies on a particular
form of recursive programming known as co-recursion. The data manipulated in
this library are streams of signed digits, in other words infinite sequences. The
central concept is the computation of series, which was already studied in [2]. We
suggest a few improvements on the known results and we implement division,
a function that had not been considered yet in this particular framework. One
of the original characteristics of our work is that our library is parametrized by
the base used to interpret the digit streams.

First we will see why we represent real numbers as streams of signed digits of
an arbitrary positive integer base. Then we will describe how the formalization of
the base influences the complexity of the operations and what are the solutions
we provide to adapt the algorithms to this new framework. We will also see how
we improve the technique to compute converging series. Finally after giving an
idea of the formalization in Coq [3,5], we will illustrate the benefits in efficiency
of using large bases with some benchmarks.

2 Representation of Real Numbers

It is well known that datatypes containing only finite objects are not suitable for
representing real numbers. Real numbers are commonly described in computer
programs as floating point numbers. This representation actually describes a
finite subset of rational numbers. When accumulating computations on such
approximations one has to handle round-off problems in order to avoid erroneous
results [9].

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 48–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Certified Exact Real Arithmetic 49

A common approach used in every day life is to view real numbers as fractional
numbers with a possibly infinite fractional part. More formally these represen-
tations are sequences of digits i.e. function from positive integers to integers so
that the sequence 0.x1 . . . xn . . . actually has the value

∑∞
i=1

xi

βi . In such a rep-
resentation, every day practice relies on the xi being between 0 and β− 1, but a
more efficient approach is to take xi between −β + 1 and β − 1. This extension
with signed digits adds redundancy but this redundancy supports more efficient
algorithms and is some time essential to ensure that some computations termi-
nate. Some other models of exact real arithmetic have been implemented using
infinite datatypes. For instance with continued fractions [14], regular functions
of rationals [12] or streams of linear fractional transformations [6].

Describing the sequences of digits as simple functions from positive integers to
integers seems appropriate to work in a higher order setting but this technique
has flaws when you compute the function for a given n and then you want to
compute for a higher integer. The second time you need to recompute all that
was already computed for n.

With co-inductive types we can represent a real number in a more natural way
i.e. as the infinite stream of its digits. Co-inductive objects are lazily evaluated,
thus the first n digits of a stream will be reused when computing the following
digits and then avoid re-computation. These objects are defined by co-recursive
functions and properties over these functions can be proved by co-induction.

Since co-induction [7] in Coq provides such a framework to reason on infinite
datatypes, several certified implementations of exact real arithmetic arose using
streams of a set of three redundant digits [2,4] or streams of linear fractional
transformations [11].

We chose to represent real numbers as streams of signed digits of an arbitrary
integer base. The set of signed digits of a base β is {−β +1, . . . , β−1}. The neg-
ative digits will be written with a bar: 1̄ = −1. This representation is redundant
in the sense that a number will have several representations. For instance the
streams 3::3::3::3::3 . . . and 4::7̄::3::3::3 . . . are suitable representations
of the number 1

3 = 0.33333 . . . in base ten.
Often, we will not make any difference between a stream and the real value

it represents. The stream beginning by the digit k and followed by the stream s

is denoted by k::s and its value is k+s
β , since

∑∞
i=1

di

βi =
d1+
�∞

i=1
di+1

βi

β .
The interval of numbers that can be represented by a stream beginning with

a digit k is [k−1
β , k+1

β]. Indeed the value of a stream k::s is k+s
β and a stream s

represents a value of [−1, 1]. The redundancy comes from the fact that two con-
secutive intervals of this kind overlap: [k−1

β , k+1
β]∩ [(k+1)−1

β , (k+1)+1
β] = [k

β , k+1
β].

The benefit of the redundancy can be understood noticing that the magnitude of
overlaps of intervals of consecutive digits is a constant equal to 1

β . Thus knowing
an interval of this magnitude containing a real is always enough to decide the
first digit for one of its representations.

Since we have a way to describe all the real numbers in [−1, 1] we can use a
couple (mantissa, exponent) to represent all the real numbers. So when describing
an algorithm, we first describe the part on the mantissa and then we extend it to

50 N. Julien

the full representation. Since the second part is standard however the mantissa
is represented, we will focus on the first part.

To compute the mantissa of a real number we try to obtain an interval which
contains the number such that we can decide the first digit of the number.
Thus the operations on mantissa are described by co-recursion as functions that
produce the first digit and are called recursively to produce the following digits.

We work with bases greater than 4 since it is required by some algorithms.
Because our goal is to use larger bases, this should not be a real restriction.

3 Computing Addition

The problem with addition is that the result of adding two numbers of [−1, 1]
is not in [−1, 1] but in [−2, 2] and so it could not be represented only with a
stream. Bertot proposes to avoid this by first defining the “half-sum” x, y �→ x+y

2 .
Then he defines the function that multiplies a number by 2 if it’s in [0, 1

2],

x �→
{

2x if x ≤ 1
2

1 otherwise
. Finally he obtains some kind of addition by composing

the two functions.
As we work with an arbitrary integer base we have adapted this idea replacing

2 by the base in the division and the multiplication. Thus we first describe a
function that given a base, two streams and a integer remainder computes a
stream of the sum of the streams and the remainder, all divided by the base:

sum div baseβ

{
[−1, 1]2 × [−β + 2, β − 2] �→ [−1, 1]

x, y, r �→ x+y+r
β

This operation is stable in [−1, 1] and we provide an algorithm to compute it:

– We read the first digit of x and y. We now have k1, k2, x′ and y′ such that
x = k1::x′, y = k2::y′. Thus we have:

sum div baseβ(x, y, r) =
r + x′+y′+k1+k2

β

β
.

Since k1 and k2 are signed digits of the base, −2β + 2 ≤ k1 + k2 ≤ 2β − 2.
Thus r seems to be a good candidate for a first digit of the result and k1 +k2

for the next remainder.
– If β − 1 ≤ k1 + k2 then k1 + k2 is too big to be a suitable remainder,

but k1 + k2 − β is acceptable. Hence the first digit can be r + 1 which is
in the set of signed digits of the base because r is the previous remainder
−β + 2 ≤ r ≤ β − 2.

sum div baseβ(x, y, r) =
r + 1 + x′+y′+k1+k2−β

β

β

= (r + 1)::sum div baseβ(x′, y′, k1 + k2 − β).

Certified Exact Real Arithmetic 51

– If k1 + k2 ≤ −β + 1 then k1 + k2 is too small to be a suitable remainder,
but k1 + k2 + β is acceptable. Hence the first digit can be r − 1 which is
in the set of signed digits of the base because r is the previous remainder
−β + 2 ≤ r ≤ β − 2.

sum div baseβ(x, y, r) =
r − 1 + x′+y′+k1+k2+β

β

β

= (r − 1)::sum div baseβ(x′, y′, k1 + k2 + β).

– Otherwise k1 +k2 is a suitable value for the remainder and r can be the first
digit.

sum div baseβ(x, y, r) =
r + x′+y′+k1+k2

β

β

= r::sum div baseβ(x′, y′, k1 + k2).

By initializing r with 0 and increasing the exponent of the result by 1 we
obtain an exact addition. But we also need an addition on streams. We now
have to define the function that multiplies a stream by the base when the result
can be represented by a stream or gives a dummy result otherwise.

mult base :

⎧
⎪⎪⎨

⎪⎪⎩

Z× [−1, 1] �→ [−1, 1]

β, x �→
⎧
⎨

⎩

−1 if x ≤ −1
β

1 if x ≥ 1
β

x× β otherwise

.

We first have to notice that the real numbers −1 and 1 obviously have only
one representation since they are the edges of the representable values. The only
way to represent 1 (resp. −1) is the sequence where only the maximal (resp.
minimal) digit β − 1 (resp. −β + 1) occurs. This is justified by the following
equality.

∞∑

i=1

β − 1
βi

=
β − 1

β

∞∑

i=0

1
βi

=
β − 1

β

1
1− 1

β

= 1

Now we can describe the algorithm of the function mult base:

– We read the first digit of x: x = k1::x′

– If k1 = 0 then the result is x′: β 0+x′
β = x′

– If k1 ≤ −2, then we can deduce that x ≤ −1
β hence the result must be the

constant −1.
– If k1 ≥ 2, then we can deduce that x ≥ 1

β hence the result must be the
constant 1.

– If k1 = 1 we need to look at one more digit of x: x = 1::k2::x′′

• If k2 < 0, then we use the redundancy of the representation to reduce
the problem to a previous case x = 1::k2::x′′ = 0::(k2 +β)::x′′, hence
the result is (k2 + β)::x′′.

52 N. Julien

• If k2 > 0, we also come to a previous case x = 1::k2::x′′ = 2::(k2 −
β)::x′′, hence the result is 1.
• If k2 = 0 then we need a recursive call:

mult base(β, 1::0::x′′) = β ×
1 + 0+x′′

β

β

=
β − 1 + β × 1+x′′

β

β

= β − 1::mult base(β, 1::x′′).

In this case we can’t know if our parameter x is lesser or equal to 1
β .

And maybe it won’t be possible even if we read an arbitrary large finite
number of more digits of x. Nevertheless, if it was lesser or equal, we
would know that it would be close enough to 1

β to be sure that the result
could begin with the digit β − 1. And if it was greater, then the result
should be the constant 1 that begins with the same digit β − 1. So it’s
correct to produce the digit and to let the recursive call try to decide
later or construct the constant 1 step by step.

– If k1 = −1 we have a symmetrical reasoning as the previous case k1 = 1.

By composing our two functions, we finally get a function over two mantissas
which computes their sum when this is in [−1, 1].

add(β, x, y) = mult base(β, sum div baseβ(x, y, 0))

add :

⎧
⎪⎪⎨

⎪⎪⎩

Z× [−1, 1]× [−1, 1] �→ [−1, 1]

β, x, y �→
⎧
⎨

⎩

−1 if x + y ≤ −1
1 if x + y ≥ 1
x + y otherwise

4 The Function make digit

We have described an algorithm for addition which computes the first digit of
their sum from the first two digits of the parameters and so on recursively.
Another method is possible when we know that one argument is close enough
to zero. In this case computing a prefix of the other parameter is enough to
compute the first digit of their sum.

Indeed, suppose that we want to add x and y and we know |y| ≤ β−2
2β2 . If we

compute the first two digits of x = d1::d2::x′′ then we know a frame of x of
magnitude 2

β2 . Thus we know a frame of their sum of magnitude 1
β which is

enough to compute the first digit of the sum.
We propose here to define a function make digit which from the stream x

representing a real number, gives another stream k::x′ representing the same
number but such that k could be the possible first when adding a number close
enough to zero.

Certified Exact Real Arithmetic 53

Let y be a number “close enough of 0”:

x +
−β + 2

2β2
≤ make digit(β, x) + y ≤ x +

β − 2
2β2

.

We describe the algorithm of make digit as follow:

– We first look at the first two digits of x = k1::k2::x′′. So we have

k1 + k2+x′′
β

β
+
−β + 2

2β2
≤ make digit(β, x) + y ≤ k1 + k2+x′′

β

β
+

β − 2
2β2

k1 + 2k2+2x′′−β+2
2β

β
≤ make digit(β, x) + y ≤ k1 + 2k2+2x′′+β−2

2β

β

Since x′′ ∈ [−1, 1] we also have

k1 + 2k2−β
2β

β
≤ make digit(β, x) + y ≤ k1 + 2k2+β

2β

β

– If −β ≤ 2k2 ≤ β, then we have

k1 − 1
β

≤ make digit(β, x) + y ≤ k1 + 1
β

Thus the result can start with the digit k1 and the remaining stream is
k2::x′′:

make digit(β, x) = k1::k2::x
′′ = x.

– Otherwise, if β < 2k2

• If k1�=β−1, then we use the redundancy of the representation k1::k2::x
′′

= k1 + 1::k2 − β::x′′, we can then show that

(k1 + 1)− 1
β

≤ make digit(β, x) + y ≤ (k1 + 1) + 1
β

The result can be:

make digit(β, x) = k1 + 1::k2 − β::x′′.

• Otherwise k1 + 1 = β, it is not in the set of digits, but since we suppose
the result is in [−1, 1], we have

(β − 1)− 1
β

≤ make digit(β, x) + y ≤ 1 =
(β − 1) + 1

β

The result can be:

make digit(β, x) + y = β − 1::k2::x
′′.

– Otherwise 2k2 < −β and we have a similar reasoning.

54 N. Julien

5 Computing Series

In his work Bertot describes how to compute converging series using the tech-
nique described in the function make digit. Indeed a converging series can be
split into a finite part and an infinite part as close to zero as needed. We have
adapted this technique for an arbitrary integer base and improved its description
by defining the function make digit.

To compute the stream of a series
∑∞

i=0 ai which converges in [−1, 1], we
start with defining a more general function

f(β, j, n, r) = βj ×
∞∑

i=n

ai + r.

Then we should compute the series as a particular case: f(β, 0, 0, 0) =
∑∞

i=0 ai.
We first have to find a p ≥ n such that |βj ×∑∞

i=p ai| ≤ β−2
2β2 . Because the

series is converging we know that such a p exists.

f(β, j, n, r) = (βj ×
p−1∑

i=n

ai + r) + βj ×
∞∑

i=p

ai

We are in the situation that make digit was designed for. We can compute a
digit k and a stream r′ such that k::r′ = βj ×∑p−1

i=n ai + r with k a possible
first digit of the result of f(β, j, n, r). Then we can produce this k as the first
digit and continue computing the series with a recursive call:

f(β, j, n, r) = (βj ×
p−1∑

i=n

ai + r) + βj ×
∞∑

i=p

ai

=
k + r′

β
+ βj ×

∞∑

i=p

ai

=
k + β × βj

∑∞
i=p ai + r′

β

= k::f(β, j + 1, p, r′)

Thus the schema to define a co-recursive function that computes a series is:

– To find the p that split the series such that the infinite part is close enough
to 0. This is often done with a recursive function.

– To compute a possible first digit using make digit and produce it.
– To define the stream of the following digits with a co-recursive call.

The part of the function that uses make digit to produce the first digit and
perform the recursive call does not depend on the series and can be formalized
once and for all. The parameter r of f could be understood as the difference
between the series and its approximation given by its first digit. In general, the

Certified Exact Real Arithmetic 55

parameters of the function f will not exactly be the ones we used to describe the
technique. Sometimes a parameter is simplified or hidden in another parameter.
And often we will use extra parameters to describe intermediate computations.
For instance to avoid re-computing a n! that appears in a series.

The number βj ×∑p−1
i=n ai + r we give to make digit is not necessarily in

[−1, 1]. But the result of adding the stream representing βj ×∑p−1
i=n ai and the

stream r is guaranteed only if it is in [−1, 1]. To ensure the correctness of our
computations we previously relied on tricks, like grouping terms of the series to
have only positive terms.

We recently found a better solution. It consists in guaranteeing that the pa-
rameter r is always inside the interval [−β+2

2β , β+2
2β]. This parameter is either

the initial value 0 or computed by make digit at a previous step. The function
make digit is trying to produce r as close to 0 as possible, thanks to redun-
dancy. We can see in its algorithm that r is not in this interval only if the input
is too close to the bounds of [−1, 1] where redundancy cannot be used i.e. out-
side [− 2β2−β−2

2β2 , 2β2−β−2
2β2]. But when computing series, the input of make digit

is the sum of a previous r and the finite part of the series: βj ×∑p−1
i=n ai. Our

solution is to consider series converging inside [−β−4
2β , β−4

2β]. Then splitting the
series in order to ensure its infinite part is in [−β−2

2β2 , β−2
2β2] forces its finite part in

[−β2−3β−2
2β2 , β2−3β−2

2β2]. Thus the sum of the finite part of the series and a number
in [−β+2

2β , β+2
2β] is a suitable input for make digit to produce a stream that is

still in [−β+2
2β , β+2

2β] an so on.
A simple way to compute series converging in [−1, 1] but outside [−β−4

2β , β−4
2β]

is to divide its terms by the base β by adding a zero in front of the stream of
each finite part of the series. Thus the series will converge in the right interval
if β ≥ 6 and finally we multiply it by the base to compute the initial series.

6 Computing Multiplication

Multiplication can be defined as a series and we can use the previous technique
to define it.

u× v =
∞∑

i=1

ui

βi
× v

Bertot shows that in the multiplication, the parameter y that appears in the
technique we described, is useless. Indeed at each step it is multiplied by β but
then it is used in a computation where it is divided by β. The parameter n is
also useless because

∑∞
i=n

ui

βi is the original stream u without its first n digits.
The general function we have to defined is f(β, u, v, r) = u × v + r. To do this,
we first have to read the first digit of u = k::u′, then:

f(β, u, v, r) =
k + u′

β
× v + r =

k × v

β
+ r +

u′ × v

β

56 N. Julien

Then we use make digit to find the first digit of the result.
If d::r′ = make digit(k×v

β + r) and |u′×v
β | ≤ β−2

2β2 then

f(β, u, v, r) = d::f(β, u′, v, r′)

As we said before, we can see here the division of u′ × v by the base which is
canceled by the multiplication that appears in the recursive call. We need that
the inequality |u′×v

β | ≤ β−2
2β2 holds to make this definition valid. A simple way to

ensure it is to divide the parameter v by the base, adding the digit 0 in the head
of the stream, and multiply the result by the base:

β × f(β, u, 0::v, r) = β × u× v

β
+ r = u× v + r

Then it becomes trivial that for all streams u′ and v representing numbers in

[−1, 1], |u
′× v

β

β | ≤ β−2
2β2 holds.

Another problem we have to deal with is to ensure that the parameter we
give to make digit can be computed i.e. k×v

β + r ∈ [−1, 1]. Our first approach
was to modify the algorithm, reading one more digit of u. In this way, thanks to
redundancy, we could easily modify the argument given to make digit in order
to be in [−1, 1]. But seven different cases had to be considered so it became
much more difficult to understand the algorithm and especially proof. When we
improved our specification of make digit we decided to use it to simplify our
multiplication. We just have to ensure that |k×v

β | ≤ β−3β−2
2β . Here adding a zero

in front of v is almost enough. Adding a second one makes the needed inequality
holds.

So we now compute the multiplication in this way:

β × β × f(β, u, 0::0::v, 0) = β × β × u×
v
β

β
+ 0 = u× v

The last requirement we need is a way to compute the multiplication of a
stream by a digit as k×v

β occurs in the parameter of make digit.
First we defined it as a series similarly as the multiplication of streams. Among

the requirements for this series, we need to compute the representation of rational
numbers. This easy operation was already done in the first basic functions we
defined.

Unfortunately this computation of multiplication was less efficient than the
definition of Bertot for the base two. Indeed when using arbitrary integers base
the multiplication of a stream by a digit becomes a problem. In base 2 it was
just a multiplication by 0 or by 1 or a division by the base i.e. direct operations
but now we compute it as a series.

We found inspiration in Avizienis’ work [1] to improve our multiplication of
a stream by a digit. The idea is that with the set of digits we use, we have
enough redundancy to produce at the same time the digits of the addition of
	β

2
 numbers. This addition can be defined in the same schema we used for the
addition of two streams.

Addβ,n

{
[−1, 1]n × [−β + n, β − n] �→ [−1, 1]

x1, . . . , xn, r �→ x1+...+xn+r
β

Certified Exact Real Arithmetic 57

Since r is a remainder of a division by β, the thinnest set of values it needs is
[−�β

2 �, �β
2 �]. And thus the maximal number of streams we can add is 	β

2
.
Actually, using this idea, we defined a particular case of this addition where

all inputs are the same stream. This define the multiplication of a stream by
a digit of [0, 	β

2
]. To compute multiplication by a digit larger than 	β
2
, we

use this multiplication and an extra addition: k×x
β = (k−β)×x

β + x. If the digit
is negative, then we proceed as described with the positive value and then we
compute the opposite.

7 Computing Inverse

The inverse function does not fit well with the tradition of theorem provers to
only support total functions. Moreover the inverse function cannot be extended
easily into a total function because it is undecidable to know whether a given
stream represents 0. A second problem is that the inverse of a number in [−1, 1]
normally is outside this interval.

A way to avoid this problem is to define a function that is only guaranteed
to coincide with x �→ 1

βnx when the input is outside [− 1
βn , 1

βn] and may return
a value that cannot be trusted otherwise.

The algorithm we propose is the following.

– If n = 0 the result should be x itself. Indeed the result we produce has to be
correct only if 1 = β0 ≤ |x|. Then x should be equal to −1 or 1 because it is
in [−1, 1]. In both cases we have 1

x = x.
– Otherwise 1 ≤ n and we have to read the first digit of x = k1::x′.
• If 2 ≤ |k1|, we can turn the function into a converging series:

1
βn × k1+x′

β

=
1

βn−1

1
k1

1
1− −x′

k1

=
1

βn−1

1
k1

∞∑

i=0

(−x′

k1

)i

As 2 ≤ |k1|, |−x
k1
| ≤ 1

2 so it is straightforward that the series
∑∞

i=0

(
−x
k1

)i

converges in [−2, 2]. The division by k1 makes the series converging in
[−1, 1]. Therefore a representation of the result could be the stream of
this series where n − 1 zeros were added in front of it to compute the
remaining division by βn−1.
• If k1 = 0 then 1

βn× 0+x′
β

= 1
βn−1×x′ . This yields a recursive call on n− 1

and x′.
• If k1 = 1 then we need to read a second digit of x = k1::k2::x′′.
∗ If k2 < 0 then k2+β is in the set of signed digits of β and the prefixes

1::k2 and 0::(k2+β) are equivalent i.e. 1
β + k1

β2 = 0
β + k1+β

β2 . Therefore
we can proceed as in a previous case.
∗ If k2 > 0 then k2 − β is in the set of digits and the prefixes 1::k2

and 2::(k2 − β) are equivalent. Therefore we can proceed as in a
previous case.

58 N. Julien

∗ Otherwise k2 = 0 then we cannot choose another representation of
x but we can use again a series to compute the inverse:

1
βn × (1::0::x′′)

=
1

βn
1+ 0+x′′

β

β

=
1

βn−1

1
1− −x′′

β

=
1

βn−1

∞∑

i=0

(−x′′

β

)i

Here again we rely on a converging series. But it is converging in [− β
β−1 ,

β
β−1] which is larger than [−1, 1].
We can then distinguish two cases.
∗ If 2 ≤ n then we can write

1
βn−1

∞∑

i=0

(−x′′

β

)i

=
1

βn−2

1
β

∞∑

i=0

(−x′′

β

)i

Thanks to the division by the base we can make the series converge
inside [− 1

β−1 , 1
β−1] which is inside [−1, 1]. Thus the inverse will be

the stream beginning by n − 2 zeros followed by the stream of the
series.
∗ Otherwise n = 1 then we can compute

1
β0

∞∑

i=0

(−x′′

β

)i

= β
1
β

∞∑

i=0

(−x′′

β

)i

In this case we can also compute the stream of the series divided by
the base. And if the x satisfies 1

βn ≤ |x| then this stream should be
in [− 1

β , 1
β]. Therefore the result of the multiplication by the base will

be guaranteed and we obtain the inverse.
• If k1 = −1 then we can proceed symmetrically as k1 = 1

In three cases this first step requires to describe how to compute a converging
series

1
k

∞∑

i=0

xi with 2 ≤ |k| ≤ β and |x| ≤ 1
k

.

So we first should define the function f(x, j, n, r) = r+βj
∑∞

i=n xi. As we saw,
to compute this series we need to find a p ≥ n such that |βj

∑∞
i=p xi| ≤ β−2

2β2 . So

our first intuition was that finding a suitable p and computing r + βj
∑p−1

i=n xi

iteratively should be too expensive. So we tied to find a different way to compute
the series that need less computation for each step.

We noticed that for each l ≥ 1,

1
k

∞∑

i=0

xi =
1
k

(1 + . . . + xl−1 + xl(1 + . . . + xl−1) + . . .)

=
1
k

l−1∑

i=0

xi
∞∑

i=0

(xl)i.

Certified Exact Real Arithmetic 59

In this way we can find a l such that the computation of the series could be
simplified. If we choose it even, then the terms of the series

∑∞
i=0(x

l)i will be all
positive and if we choose it larger than logk β then we will have |xl| ≤ 1

β , since
|x| ≤ 1

k .
It will be now easy to define the function that for 0 ≤ x ≤ 1

β and y in [−1, 1],
computes:

f(β, n, x, y, r) = r + βn × y

∞∑

i=n

xi

= r + βn × y × xn + βn × y
∞∑

i=n+1

xi.

As we described in the technique, to split the series in n + 1 we need:

|βn × y

∞∑

i=n+1

xi| ≤ β − 2
2β2

βn × |y| × | x
n+2

1− x
| ≤ β − 2

2β2

βn xn+2

1− x
≤ β − 2

2β2

x

β(1 − x)
≤ β − 2

2β2

2xβ2 ≤ β(1− x)(β − 2)
2β ≤ (β − 1)(β − 2)
4 < β

So at each step we can split the series in this way if we work with a base greater
than 4. We use extra parameters to keep the precomputed value βn× y×xn. In
this way, our implementation requires one multiplication and one addition for
each step. The initialization requires to compute xl and

∑l−1
i=0 xi such that l is

even and |xl| ≤ 1
β . And by composing all this functions, we define the inverse

x, n �→ 1
βn×x when x is outside [− 1

βn , 1
βn].

8 Formalization and Proofs of Correctness

We give here a brief an idea of how to use co-induction to implement and certify
these algorithms in Coq. Co-induction [7] in Coq provides a way to define types
of potentially infinite objects. It allows us to implement this representation of
real numbers and our algorithms as we described them. The type of infinite
sequences of objects of any type A could be define as follow.

60 N. Julien

CoInductive stream (A:Set): Set :=

| Cons : A → stream A → stream A.

Cons should not be understood as a way to construct an infinite stream from
another since we cannot give an initial infinite stream, but as a way to decompose
an infinite stream into a finite part and an infinite part that could be described
again with Cons and so on. A co-inductive object is lazily evaluated each time
one asks for a better description. The only way to force a step of evaluation of
such an object in Coq is using pattern matching.

We can then define streams using co-recursive functions, for instance the
stream of 0 which obviously represents the real number 0.

Cofix zero : stream Z :=

Cons 0 one.

Coq prevents the users from defining non terminating functions. The way
to certify that recursive functions always terminate in Coq is to only provide
structural recursion on inductive types. For co-recursive functions it means that
one can expect the evaluation of any finite part of the object described by the
function to terminate. This is guaranteed if co-recursive calls are done after
producing a part of the result i.e. inside a constructor of the co-inductive type.
Coq automatically rejects co-recursive definitions that do not satisfy this guarded
condition.

Co-inductive predicates can be defined to describe an infinite behavior of such
an object. We defined in this way a relation between a stream and the number
it represents using the fact we explained before: k::s = k+s

β .

CoInductive represents (β : Z): stream Z →R → Prop :=

| rep : ∀ s r k, −β < k < β → −1 ≤ r ≤ 1 →
represents β s r → represents β (Cons k s) k+r

β
.

It means that if k is in the set of signed digits of base β and s is the represen-
tation in this base of a number r ∈ [−1, 1], then k+r

β is the value represented
by Cons k s in base β.

Then to show that an algorithm we define on our representation is computing
a mathematics function, we prove that the predicate represents is some kind of
a morphism between the algorithm and the function. For instance, the theorem
that the stream zero represents the real value 0 is

Theorem zero_correct :

∀ β, represents β zero 0.

Proving a co-inductive predicate in Coq means constructing a co-recursive
function whose type is the predicate. The tactic cofix helps to construct in-
teractively such functions. It simply adds the goal to the hypothesis. But one

Certified Exact Real Arithmetic 61

has to prove a finite and non-empty part of the theorem before applying this
hypothesis since it corresponds to describe a co-recursive call. When the user
has finished the proof he asks Coq to validate it. The system Coq will perform
the verification that the guarded condition holds and accept the proof only if it
is successful.

All the algorithms presented here are implemented and certified in Coq. We
provide additional certified algorithms:

– absolute value
– minimum and maximum
– injection from rational numbers to our representation
– constant π

– a comparison test: compare(x, y, n) = true if x + 1
βn ≤ y

The development and some additional information can be found in http://
www-sop.inria.fr/marelle/Nicolas.Julien/exactreals.html.

9 Benchmarks

The goal of formalizing the base in this library was to use fast operations on
integers. We present here some benches inside the proof system Coq. The digits
are implemented with the library BigZ [8] which provides fast operations on
non-bounded integers using an implementation of native integers [13] in Coq.

We compared the time of computation of the same number in different bases.
We also compared with previous work on base 2 (LCR) [2]. For each base we
computed the number of digit needed for the same precision: n digits in base β
give a precision of the number of 1

βn . For instance knowing 10 digits in base 210

is equivalent to knowing 1 digit in base 2100. These computations were made on
a computer with two processors P4 3.40GHz and 1GB of memory.

– Computation of 3
7 + 5

9

Used Base LCR (2) 231 262 2124 2248 2496

Number of digit 248000 16000 8000 4000 2000 1000
Time (s) Computation failure 3.600 1.896 1.036 0.584 0.348

– Computation of 3
7 × 5

9

Used Base LCR (2) 231 262 2124 2248 2496

Number of digit 7440 240 120 60 30 15
Time (s) 77 7.032 2.364 0.852 0.384 0.220

It is clear here that the use of big bases improves computations. The reason
is that since the complexity of operation we use should not be affected when
the size of the base is increasing, reducing the number of digit reduces the
number of recursive steps.

http://www-sop.inria.fr/marelle/Nicolas.Julien/exactreals.html
http://www-sop.inria.fr/marelle/Nicolas.Julien/exactreals.html

62 N. Julien

– Computation of π
4

Used Base LCR (2) 231 262 2124 2248 2496

Number of digit 3472 112 56 28 14 7
Time (s) Computation failure 14.6 5.57 3.49 4.03 6.93

Here π
4 is computed with more than one thousand of decimals : 1

23472 =
1

4×(210)347 ≤ 1
101041 . We can see here that even if the efficiency is firstly

growing with the base, with very large bases it is decreasing. A reason could
be that since we need to compute only a few digits with big bases, the
efficiency of computation on integers starts to matter. Indeed for the test
on adding or multiplying all computed integers were lower than the square
of the base. Here as contrary we used integers for intermediate computation
that can be much larger.

– Computation of 1

β1×(3
7+ 5

9)
Used Base 231 262 2124 2248 2496

Number of digit 16 8 4 2 1
Time (s) 0.056 0.196 0.740 3.176 15.3

Surprisingly we can observe an inverse behavior here. A possible explanation
is that in the trick we use, we split the series in finite sums of 2 × logk β
terms to compute each digit. It’s more than needed. And the bigger the
base, the larger the difference between what we compute and what we need.
Redesigning the inverse with the new technique we described may be a way
to improve its efficiency.

10 Conclusion and Future Work

Our work contributes mainly to the problem of computing converging series.
Previous work only gave insights for the computation of series with all positive
terms, but we identified the problems that may be encountered when terms may
have different signs. We propose a new approach to decompose each step of the
computation, embodied in our function make digit and we show that series that
are proved to converge in a shorter interval than [-1,1] are easier to handle and
we propose a technique to map all cases to the easy ones. Properties and tactics
are also described to simplify the certification of implementation of new series.

An important point is that this library is compatible with the reduction mech-
anism of Coq. It means that all operations we provide can be evaluated inside the
proof assistant and computation on real numbers can be used as genuine proofs.
This could be helpful for theorems relying on computations [10]. Moreover by
formalizing the base, the operations are much more efficient than previous work
on base two.

We are now working on improving the efficiency of the inverse thanks to our
better description of the computation of series. We also would like to define
analytic functions using their taylor series. Better understanding the issues of
computing converging power series would be helpful.

Certified Exact Real Arithmetic 63

References

1. Avizienis, A.A.: Signed-digit number representations for fast parallel arithmetic.
IRE Transactions on Electronic Computers 10, 389–400 (1961)

2. Bertot, Y.: Affine functions and series with co-inductive real numbers. Mathemat-
ical Structure in Computer Sciences 17(1) (2007)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
In: Coq’Art:the Calculus of Inductive Constructions, Springer, Heidelberg (2004)

4. Ciaffaglione, A., Di Gianantonio, P.: A coinductive approach to real numbers. In:
Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.) TYPES 1999. LNCS,
vol. 1956, pp. 114–130. Springer, Heidelberg (2000)

5. Coq development team. The Coq Proof Assistant Reference Manual, version 8.0
(2004)

6. Edalat, A., Heckmann, R.: Computing with Real Numbers. In: Barthe, G., Dybjer,
P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 193–267.
Springer, Heidelberg (2000)

7. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Smith, J.,
Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995)

8. Grégoire, B., Théry, L.: A Purely Functional Library for Modular Arithmetic and
Its Application to Certifying Large Prime Numbers. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg
(2006)

9. Muller, J.-M.: Elementary Functions, Algorithms and implementation. Birkhäuser,
Basel (1997)

10. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame Graphs. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer,
Heidelberg (2006)

11. Niqui, M.: Coinductive Correctness of Homographic and Quadratic Algorithms for
Exact Real Numbers. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS,
vol. 4502, pp. 203–220. Springer, Heidelberg (2007)

12. O’Connor, R.: A monadic, functional implementation of real numbers. Mathemat-
ical Structures in Computer Science 17, 129–159 (2007)

13. Spiwack, A.: Ajouter des entiers machine coq (2006),
http://arnaud.spiwack.free.fr/papers/nativint.pdf

14. Vuillemin, J.E.: Exact real computer arithmetic with continued fractions. IEEE
Transactions on Computers 39(8), 1087–1105 (1990)

http://arnaud.spiwack.free.fr/papers/nativint.pdf

Pure, Declarative, and Constructive

Arithmetic Relations
(Declarative Pearl)�

Oleg Kiselyov1, William E. Byrd2, Daniel P. Friedman2,
and Chung-chieh Shan3

1 FNMOC
oleg@pobox.com

2 Indiana University
{webyrd,dfried}@cs.indiana.edu

3 Rutgers University
ccshan@cs.rutgers.edu

Abstract. We present decidable logic programs for addition, multipli-
cation, division with remainder, exponentiation, and logarithm with re-
mainder over the unbounded domain of natural numbers. Our predicates
represent relations without mode restrictions or annotations. They are
fully decidable under the common, DFS-like, SLD resolution strategy of
Prolog or under an interleaving refinement of DFS. We prove that the eval-
uation of our arithmetic goals always terminates, given arguments that
share no logic variables. Further, the (possibly infinite) set of solutions
for a goal denotes exactly the corresponding mathematical relation. (For
SLD without interleaving, and for some infinite solution sets, only half
of the relation’s domain may be covered.) We define predicates to handle
unary (for illustration) and binary representations of natural numbers,
and prove termination and completeness of these predicates. Our pred-
icates are written in pure Prolog, without cut (!), var/1, or other non-
logical operators. The purity and minimalism of our approach allows us
to declare arithmetic in other logic systems, such as Haskell type classes.

1 Introduction

Logic programming is said to be programming with relations, but arithmetic is
often dealt with in a non-relational, restricted way. For example, Prolog’s built-
in is/2 predicate for evaluating arithmetic expressions does not allow free (un-
bound) logic variables in the expressions. Whereas the goal Z is 6*7 succeeds,
binding 42 to Z, the related goal 42 is X*Y is considered erroneous because
its multiplicands ‘are not sufficiently instantiated.’ Multiplication is not treated
as a ternary relation between multiplicands and the product because of mode
restrictions on the first two arguments. Constraint logic programming (CLP)
overcomes this drawback to some extent [1]; for example, disjunctive Datalog [2]
treats arithmetic relationally. Indeed, relational handling of arithmetic was one of
� We thank Ronald Garcia and the anonymous reviewers for many helpful comments.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 64–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pure, Declarative, and Constructive Arithmetic Relations 65

the motivations for CLP. Unfortunately, this flexibility has a price: CLP restricts
the arithmetic domain to be finite and changes the evaluation mode of the logic
programming system away from Kowalski’s ‘predicate as function’ model [3].

We present fully relational arithmetic on the unbounded domain of binary
natural numbers for conventional (SLD [4], or SLD with interleaving [5]) logic
programming systems. We define predicates for addition, multiplication, divi-
sion with remainder, and logarithm with remainder. These predicates express
the remaining arithmetic operations, including subtraction and exponentiation.
These so-called base predicates have no mode restrictions or annotations on
their arguments, and are implemented in a pure logic system without cut (!),
the var/1 predicate, or negation. Furthermore, each base predicate terminates
under SLD evaluation (and re-evaluation, upon backtracking), provided that the
predicate’s arguments share no logic variables. The stream of answers produced
by (re-)evaluating each arithmetic predicate under SLD with interleaving [5] cov-
ers exactly the corresponding mathematical relation; under SLD resolution and
some infinite domains, only half of the relation is covered.

In particular, we define the following decidable predicates:

add/3 such that add(X, Y, Z) can be used to add two numbers X and Y to
get Z, to subtract X or Y from Z, to decompose Z into summands, or to
compare two naturals. For example, we can determine that the triple (1, 2, 3)
is in the ternary addition relation1 by evaluating either the goal add(1,2,3)2

or the goal add(X, Y, Z), X = 1, Y = 2, Z = 3. By evaluating add(X,3,2)
we determine, also in finite time, that the addition relation does not include
any triple (n, 3, 2).

mul/3 such that mul(X, Y, Z) can be used, inter alia, to multiply X and Y , to
factor Z, or to generate a stream of triples related by multiplication.

div/4 such that div(N, M, Q, R) succeeds if and only if N = M · Q + R <
M · (Q + 1).3 For instance, the goal div(1,0, ,) to relate the divisor zero
to a non-zero dividend fails instantly, without trying to enumerate all nat-
ural numbers. The goal div(5, M,1,) finds all numbers M that divide 5,
perhaps unevenly, with a quotient of 1. The answers are 5, 4, and 3. Finally,
div(5,M,7,) fails in finite time rather than diverging.

log/4 such that log(N, B, Q, R) succeeds if and only if N = BQ + R < BQ+1.
We can use log/4 to perform exponentiation, find logarithms, and find n-th
roots.

We prove that these base predicates are decidable and that the arithmetic re-
lations over natural numbers form their universal model (see the faithfulness
property introduced in §2).
1 We mean a relation that relates triples of numbers (x, y, z) so that x + y = z.
2 3 means the representation of the binary numeral 3, which in Prolog is encoded as
[l,l] (§3).

3 This equation implies that div/4 fails when M is 0. Hence mul/3 is not reducible to
div/4. Besides, the former is simpler and is part of the implementation of the latter.

66 O. Kiselyov et al.

1.1 Challenges

We require the predicates to be both effective and efficient. First, the evaluation
of base arithmetic goals must terminate. Put differently, it must be effectively
computable whether a tuple of naturals is included in or excluded from a base
arithmetic relation (addition, multiplication, division with remainder, and loga-
rithm with remainder). Further, these computations must finish without taking
an exponential amount of time or space with respect to the ‘search depth’ (corre-
sponding, in the case of binary numbers, to the logarithm of the largest number
appearing in the computation). In other words, we wish to maintain the effi-
ciency of depth-first search (DFS) (or DFS with interleaving [5, 6]) of the and-or
tree expressing the solution space of our base goals.

The main challenge in defining our predicates is that the domains of natural
numbers, and of arithmetic relations in general, are infinite—enumerating them
is not an option. The incompleteness of DFS (used in SLD resolution) imme-
diately presents a problem. For example, assuming that gen/1 is a predicate
that generates all (ground) natural numbers in sequence, one may be tempted
to implement mul/3 (separating the generation and testing for clarity) as

mul(X,Y,Z) :- gen(A), X=A, gen(B), Y=B, gen(C), Z=C, C is A*B.

In addition to its obvious inefficiency, this implementation4 often diverges under
DFS. For example, evaluating mul(X, Y,1) instantiates A and B to 0 and C to 1,
causing the goal C is A*B to fail; after backtracking into gen(B), mul/3 keeps
forever instantiating B to larger and larger positive numbers, each time resulting
in failure of the goal 1 is 0*B.

One may attempt to fix this problem by using a complete search strategy,
such as breadth-first search (BFS) or iteratively-deepening DFS. Even ignoring
efficiency concerns, this implementation of mul/3 is still unacceptable: a complete
search strategy will find a solution if it exists, but if no solution exists the search
will continue forever. For example, although BFS finds the instantiation of Y that
satisfies mul(1, Y,2), the goal mul(2, Y,1) still diverges. Thus we must devise a
termination criterion for mul/3.

Devising a termination criterion may seem easy. For example, when searching
for X and Y that satisfy the goal mul(X, Y,5), we only need to examine X and
Y values up to 5—since the search space is finite, the evaluation of the goal
certainly terminates. The problem arises when determining whether the third
argument in a specific use of mul/3 is instantiated to a ground numeral. This
task is trivial if we use the ‘impure’ non-logical features provided by Prolog’s
reflection facilities, such as the infamous var/1 predicate. Even if var/1 were
absent from Prolog, it could be emulated using cuts and negation. We disavow
such tools—we aim to implement our predicates in a pure subset of Prolog,
without cuts, reflection, or any way to distinguish a logic variable. This aim for
purity is a challenge that in return makes our approach most elucidating and
extensible.
4 Braßel, Fischer, and Huch [7] describe the drawbacks of this residuation-based ap-

proach in functional logic programming.

Pure, Declarative, and Constructive Arithmetic Relations 67

The final challenge is that the binary representation of a number may not
be structurally part of that of its successor. For example, the binary numeral
111 (in decimal, 7) is not structurally part of its successor 1000. This lack of
structural inclusion prevents straightforward structural recursion.

1.2 Termination and Solvability

These challenges make the arithmetic predicates tricky to code. It is not obvious
that the resulting predicates have the claimed properties, in particular, that
they terminate in all modes. We therefore devote much of the paper to proofs.
A typical termination theorem we prove assures that evaluating or re-evaluating
add(X, Y, Z) terminates, provided that the terms initially associated with X , Y ,
and Z share no logic variables. Successive re-evaluations of this goal recursively
enumerate the stream of unique triples (X, Y, Z) of potentially non-ground terms
whose denotation (§2.2) is the domain { (u, v, w) ∈ X×Y ×Z : u+v = w }. Thus,
membership and non-membership are computable for base arithmetic relations.

We guarantee termination only for stand-alone base arithmetic goals but not
their conjunctions (see §2.1). This non-compositionality is expected, since con-
junctions of arithmetic goals can express Diophantine equations; were such con-
junctions guaranteed to terminate, we would be able to solve Hilbert’s 10th
problem, which is undecidable [8]. We also do not guarantee termination if the
goal’s arguments share variables. Such a goal can be expressed by conjoining a
sharing-free base goal and equalities.

We proceed as follows. In §2 we define addition and multiplication predicates
for a unary representation of natural numbers. We introduce solution sets, §2.1,
to carefully establish termination for these predicates, laying a foundation for
our analysis of binary predicates. In §3 we introduce our representation of bi-
nary numerals, and in §4 and §5 we define predicates for binary addition and
subtraction, and multiplication, respectively. In §6 we briefly describe our pred-
icates for binary division, exponentiation, and logarithm. For lack of space, we
relegate our pure Prolog implementation of exponentiation, logarithm, and non-
interleaving binary multiplication to the accompanying source code,5 along with
additional proofs, tests, examples, and discussion. We review related work in §7,
and conclude in §8. The full version of this paper6 includes appendices outlining
proofs of the properties of solution sets. We have also implemented declarative
arithmetic as Haskell type-level relations (type classes) [9].

2 Predicates for Unary Arithmetic

We begin with unary numerals. Unary is simpler than binary, since every unary
numeral is structurally part of its successor, so we may use structural recursion.
However, membership and non-membership still need to be decidable for the base
arithmetic predicates, whose domains are infinite however they are represented.
5 http://okmij.org/ftp/Prolog/Arithm/
6 http://okmij.org/ftp/Prolog/Arithm/arithm.pdf

http://okmij.org/ftp/Prolog/Arithm/
http://okmij.org/ftp/Prolog/Arithm/arithm.pdf

68 O. Kiselyov et al.

Hence, the unary case already presents our main challenges. The unary case also
lets us introduce and illustrate most of our terminology in this section.

We represent unary numerals as lists of atoms u: [] denotes zero, [u] denotes
one, [u,u] denotes two, etc.7 Throughout this section we use the shorthand n to
indicate our representation of the number n—that is, the list of u’s of length n.

Although Prolog is not statically typed, we assume an implicit type of ‘unary
numerals’ and an implicit typing of logic variables. For example, the implicit
type of the term [u, u |X] is ‘unary numeral’; the logic variable X has the same
type. The type predicate for unary numerals can be expressed as a generator:

genu([]).
genu([u|X]) :- genu(X).

A term t has the type of ‘unary numeral’ if the goal genu(t) succeeds. When
providing denotations for terms and goals we use the implicit type of a logic
variable to characterize the variable’s domain.

We can add unary numerals with a special case of the append/3 predicate.

add([],X,X).
add([u|X],Y,[u|Z]) :- add(X,Y,Z).

We can use add/3 to add numerals: the goal add(1,2, X) unifies X with 3. We
can also use add/3 for subtraction: both add(X,1,3) and add(1, X,3) unify X
with 2, and the evaluation of add(X,3,1) fails finitely. We can further use add/3
to decompose a number into its summands: for example, add(X, Y,3) has four
solutions, in which X and Y are unified in turn with 0 and 3, 1 and 2, 2 and
1, and 3 and 0. Finally, passing three distinct uninstantiated logic variables to
add/3 lets us enumerate the domain of addition over the natural numbers. The
evaluation of the query add(X, Y, Z) in Prolog yields an infinite set of solutions:

X = [] Y = _G188 Z = _G188 ;
X = [u] Y = _G188 Z = [u|_G188] ;
X = [u, u] Y = _G188 Z = [u, u|_G188] ;

and so forth. This stream of solutions represents the infinite addition relation
in two different ways. First, the goal produces an infinite number of solutions;
we can always re-evaluate the goal to get another solution. Second, each solu-
tion represents infinitely many triples, all members of the addition relation. For
example, the second solution compactly represents the infinitely many triples of
naturals (x, y, z) for which x is one and z is the successor of y. Each instantiation
of the free logic variable _G188 to a member of its domain (corresponding to its
implicit type) yields a new triple of naturals that is a member of the addition
relation. We will make extensive use of this compact representation of infinite
domains when proving termination properties of our predicates.

7 We could just as easily use a more common representation z, s(z), s(s(z)), etc. We
chose lists for consistency with our binary representation.

Pure, Declarative, and Constructive Arithmetic Relations 69

2.1 Solution Sets

To formulate propositions about add/3 and other predicates, we introduce the
notion of solution sets, which accounts for the search strategy used to run a logic
program (unlike other procedural notions of solutions). We use Prolog syntax [4].
We identify a bound logic variable with the term it is bound to, so all variables
are free for us, as for Lloyd [4]. Our goals are all pure (contain no var/1, negation,
or cuts).

We assume an idempotent notion of substitution [10]: a substitution θ is a
finite map {Xi = ti } from logic variables Xi to terms ti such that no tj contains
any Xi. We write the application of the substitution θ to a term t as tθ; this
application easily extends to tuples of terms and sets of tuples.

Definition 1 (Conjunction of substitutions). We define the conjunction θξ
of two substitutions θ and ξ by treating them as sets of equations {Xi = ti }:
we combine both sets (the result may contain two equations for the same Xi)
and use unification to solve the resulting equations [10, §2.2.3]. Our conjunction
of substitutions is thus commutative and associative. Because of the unification
our conjunction is partial: if unification fails we call the original substitutions
contradictory.

We can interpret a goal g as a function from a substitution to a (finite or infinite)
stream of substitutions. Both SLD and SLD-interleaving [5] interpret (right-
associative and non-commutative) disjunction and conjunction by

(g1; g2)(θ) = g1(θ)⊕ g2(θ),
(g1, g2)(θ) = g1(θ) � g2

where the bind operation � is defined recursively by

[] � f = [],

[θ | �θ] � f = (fθ)⊕ (�θ � f).

The difference between SLD and SLD-interleaving is that ⊕ above is defined as
stream concatenation in SLD but stream interleaving in SLD-interleaving.

Definition 2 (Solution sequence and set). Given a predicate g/n and n
terms t1, . . . , tn that may contain logic variables, a solution of a goal g(t1, . . . , tn)
is an n-tuple (t′1, . . . , t

′
n) where each t′i instantiates ti after the evaluation of

the goal succeeds using SLD or SLD-interleaving strategy. A solution can be
represented as (t1, . . . , tn)θ for some substitution θ. A solution sequence is a
sequence of solutions obtained by evaluating and successively re-evaluating a goal.
The sequence is a solution set if no two of its members unify with each other.

A goal that fails has the empty solution set. A goal whose evaluation or re-
evaluation does not terminate does not have a solution sequence. In contrast,
the goal genu(X) does have a solution sequence (which can be infinite) because

70 O. Kiselyov et al.

its evaluation and re-evaluation always terminates. We assume SLD as the de-
fault solution strategy. If we add the clause add(X,[],X). as a well-meaning
optimization (X + 0 = X) after the first clause of add/3 above, the solution se-
quence may not necessarily be a solution set: for example, the goal add(X, Y,0)
will have (0,0,0) in duplicate.

The notion of solution sequence is constructive, ‘proof-theoretic,’ to be dis-
tinguished from a model of a logic program: each solution has been actually
derived, in finite time, from the facts and rules at hand using the given solution
strategy. A term in a solution may contain free logic variables. We can prove the
following properties of solution sets (see Appendix A of our full paper).

Proposition 1. If a goal g(t1, . . . , tn) has a (finite or infinite) solution set
{ (t1, . . . , tn)θi } and ξ is a substitution that contradicts only finitely many θi,
then the goal g(t1ξ, . . . , tnξ) has a solution set { (t1, . . . , tn)(θiξ) }, omitting the
elements where θi and ξ are contradictory.

The solution set of a conjunction of goals g1(t11, . . . , t1n) and g2(t21, . . . , t2n) is
(as in a natural database join) the set of tuples { (t11, . . . , t1n, t21, . . . , t2n) } after
the evaluation of the conjunction has succeeded.

Proposition 2. If the goals g1 and g2 have a finite solution set, then the con-
junction g1, g2 has a finite solution set.

This proposition is a corollary of the previous proposition. It does not generally
hold if the solution set of one of the conjuncts is infinite. For example,

mf([],[u|Y]) :- genu(Y).
mf([u|X],Y) :- mf([u|X],Y).

The goal mf(X, Y), with the variables X and Y free, has the infinite solution
set { (0, i) : i ∈ N

+ }. However, the (left or right) conjunction of this goal with
X = 1 diverges and has no solution set. Similarly, the conjunction of mf(X, Y)
with X = Y has no solution set either. Prop. 1 applies to neither conjunction
because the substitutions {X = 1} and {X = Y } both contradict infinitely
many solution-set substitutions (in fact, all of them). The latter conjunction is
equivalent to the goal mf(X, X); such sharing of variables among the arguments
of a goal is lethal to the termination guarantees below (such as Prop. 9).

Proposition 3. If a goal g1(t1, . . . , tn) has a finite solution set { (t1, . . . , tn)θi }
and the goal g2(t′1θ1, . . . , t

′
mθ1) has an infinite solution set { (t′1θ1, . . . , t

′
mθ1)ξj },

then the conjunction g1, g2 has the infinite solution set { (t1, . . . , tn, t′1, . . . , t
′
m)

(θ1ξj) }.
This proposition describes the incompleteness of SLD: its underlying depth-first
search becomes trapped exploring the leftmost infinite branch of the search tree.
However, using the SLD-interleaving strategy, we can strengthen the proposition:

Proposition 4. If a goal g1(t1, . . . , tn) has a (finite or infinite) solution set
{ (t1, . . . , tn)θi } and the goal g2(t′1θi, . . . , t

′
mθi) has a non-empty (finite or infi-

nite) solution set { (t′1θi, . . . , t
′
mθi)ξij } for each i, then the conjunction g1, g2 has

the solution set { (t1, . . . , tn, t′1, . . . , t
′
m)(θiξij) }.

Pure, Declarative, and Constructive Arithmetic Relations 71

The proof is based on the laws of fair conjunction and disjunction in [5]; details
are given in Appendix B of our full paper. We use analogous properties for
disjunctions of goals.

2.2 Properties of Addition: Solution Sets of Addition

If t is a term and n is a natural number, then we write [un | t] to mean [u, . . . , u | t]
where u, . . . , u consists of n occurrences of u.

One can easily prove the following propositions:

Proposition 5. The goal add(X, Y, Z), where X and Y are instantiated to
ground numerals and Z is free, has a singleton solution set unifying Z with
the numeral that is the sum of those corresponding to X and Y .

That is, if the first two arguments of add/3 are instantiated to numerals, the
goal is decidable and has one solution.

Proposition 6. The goal add(X, Y, Z) where Z is instantiated to a ground nu-
meral has a finite solution set.

The proof is an easy induction on the third argument.

Proposition 7. The goal add(X, Y, Z), where X is a ground numeral n and Y
and Z are free, has the singleton solution set { (n, G, [un |G]) } where G is a free
logic variable.

The proof is by induction on X . The proposition easily extends to the case where
Y and Z are arbitrary terms, using Prop. 1.

Proposition 8. The goal add(X, Y, Z), where the arguments are distinct free
logic variables, has an infinite solution set { (n, G, [un |G]) : n ∈ N } where G is
a free logic variable. In each solution, X is unified to a ground numeral.

The proof is by induction on X and soundness of SLD resolution.

Definition 3 (Denotation of arithmetic solutions). The denotation [[·]] of
an arithmetic term or solution set is defined as follows.

[[n]] = {n}
[[t]] = { n ∈ N : n ≥ m }

where t is the non-ground term [um |X]
where X is a free logic variable of the type of unary numerals

[[(t1, . . . , tn)]] = [[t1]]× · · · × [[tn]]
[[S]] = ∪s∈S [[s]] for a solution set S (whose elements are all disjoint)

The previous propositions along with Prop. 1 let us prove:

Proposition 9. The goal add(X, Y, Z) where the arguments have no shared logic
variables has a solution set with X always unified to a ground numeral. The
denotation of the solution set is { (u, v, w) ∈ [[X]]× [[Y]]× [[Z]] : u + v = w }.

72 O. Kiselyov et al.

The proof simply invokes Prop. 6 or Prop. 7 if Z or X is ground. If neither Z nor
X is ground, then the arguments of the goal, since they share no logic variables,
contradict only finitely many solutions in the set of Prop. 8, so we invoke Prop. 1.

The proposition states that the predicate add/3 is fully decidable: for any
arguments sharing no free variables, the predicate decides if the denotation of
these arguments is in the domain of addition or not. Furthermore, for any subset
of the domain of addition of the form { (u, v, w) ∈ [[X]]× [[Y]]× [[Z]] : u+ v = w },
there is a goal with exactly this denotation. We call such a predicate faithful.

2.3 Multiplication

Multiplication of unary numbers may seem as trivial as addition. (We will be
developing several versions of multiplication, so we label the mul predicates with
a numeric version suffix to distinguish them.)

mul1([],_,[]).
mul1([u|X],Y,Z) :- mul1(X,Y,Z1), add(Z1,Y,Z).

This predicate directly encodes the inductive definition of multiplication: 0 ·x =
0, (x+1)·y = x·y+y. Indeed, the goal mul1(3,2, X) has the singleton solution set
with X unified with 6. However, the goal mul1(X,2,6) diverges after producing
the first solution, the goal mul1(X,2,5) diverges without producing anything,
and mul1(X, Y,6) overflows the stack after producing three solutions.

The problem is left-recursion in the second clause: the goal mul1(X,2, Z) with
free X and Z requires evaluating mul1(X ′,2, Z ′) again with free X ′ and Z ′.
Reordering goals in the body of the second clause eliminates left-recursion:

mul2([],_,[]).
mul2([u|X],Y,Z) :- add(Z1,Y,Z), mul2(X,Y,Z1).

Now mul2(X,2,6) has a singleton solution set and mul2(X,2,5) fails finitely.
However, whereas before mul1(3,2, X) had a singleton solution set (with X = 6),
this version mul2 diverges after the first solution, so the goal has no solution set.

Interestingly, simply swapping the arguments to add/3 fixes the problems.

mul3([],_,[]).
mul3([u|X],Y,Z) :- add(Y,Z1,Z), mul3(X,Y,Z1).

Now mul3(X,2,6) and mul3(3,2, X) both have singleton solution sets, and
mul3(X,2,5) fails finitely. The reason is important. Evaluating mul2(3,2, Z)
requires evaluating add(Z1,2, Z) whereas evaluating mul3(3,2, Z) requires eval-
uating add(2, Z1, Z). Although both addition goals denote the same relation, the
former has the infinite solution set { (0,2,2), (1,2,3), (2,2,4), . . .} whereas the
latter has the singleton solution set {(2, G, [u, u |G])} (Prop. 7). That makes all
the difference, as we prove below.

However, mul3 is not perfect. Evaluating mul3(X, Y,6) overflows the stack,
because it requires evaluating add(Y, Z1,6), which gives Z1 = 6, Y = 0 as one
solution. This solution causes a recursive call mul3(X ′, Y,6), same as the original

Pure, Declarative, and Constructive Arithmetic Relations 73

call. Thus we must treat zero multiplicands separately, taking care to avoid
overlapping solutions so that the solution sequence remains a solution set.

mul([],_,[]).
mul([u|_],[],[]).
mul([u|X],[u|Y],Z) :- add([u|Y],Z1,Z), mul(X,[u|Y],Z1).

This pattern of fixing one problem only to see another problem emerge is quite
common, which is why we need proofs.

Proposition 10. The goal mul(X, Y, Z), where X and Y are instantiated to
ground numerals and Z is free, has the singleton solution set that unifies Z with
the numeral that is the product of the numerals for X and Y .

The proof is an induction on X using Prop. 2 and Prop. 7.

Proposition 11. The goal mul(X, Y, Z), where Z is instantiated to a ground
numeral, has a finite solution set.

The proof depends on Prop. 2 and Prop. 6: each solution of add([u |Y], Z1, Z))
instantiates Z1 to a ground numeral smaller than the numeral for Z.

Proposition 12. The goal mul(X, Y, Z), where Y is instantiated to a positive
ground numeral n and X and Z are free, has the solution set { (i,n, i · n) : i ∈
N }. If Y is 0, the solution set is finite: { (0,0,0), ([u |X],0,0) }.
The proof is by induction on Y and Prop. 7.

Proposition 13. Under the SLD-interleaving strategy, the goal mul(X, Y, Z),
where the arguments share no logic variables, has a solution set that denotes
{ (u, v, w) ∈ [[X]]× [[Y]]× [[Z]] : u · v = w }.
The proof depends on Props. 9, 12 and 4. Thus under SLD with interleaving, our
mul/3 predicate is faithful to the multiplication relation on naturals.

Without interleaving, the goal mul(X, Y, Z) has the solution set {(0, G,0),
([u |G′],0,0), (1,1,1), (2,1,2), (3,1,3), . . .}. The denotation of this solution set
obviously does not cover the entire multiplication relation: the second argument
gets ‘stuck’ on 1. Under SLD, then, our predicate mul covers only an infinitesimal
part of the domain of multiplication. We can do better: we define a predicate
semimul that has the same termination properties as mul but covers half of the
domain of multiplication, namely Y ≤ X , whichever arguments are instantiated.

We first define the predicate less/2, corresponding to the less-than relation.

less([],[_|_]).
less([u|X],[u|Y]) :- less(X,Y).

The semimul/3 predicate is then as follows.

semimul([],_,[]).
semimul([u|_],[],[]).
semimul([u|X],[u|Y],Z) :- less(X,Z), less(Y,[u|X]),

mul([u|X],[u|Y],Z).

74 O. Kiselyov et al.

Proposition 14. The goal semimul(X, Y, Z), where the arguments are free logic
variables, has a solution set that denotes { (u, v, w) ∈ N

3 : v ≤ u, u · v = w }.
The proof depends on the goal less(X, Z), which asserts the trivial inequality
x < (x+1) · (y +1) for all x, y ∈ N. With free X and Z, the goal less(X, Z) has
an infinite solution set whose solutions each instantiate X to a ground numeral.
The goal less(Y, [u |X]) then has a finite solution set that grounds Y as well.
The last goal has thus a singleton solution set, by Prop. 10.

These attempts to define decidable multiplication even for the seemingly triv-
ial unary case show the difficulties that become more pronounced as we move to
binary arithmetic. We rely on a finite representation of infinite domains, precise
instantiatedness analysis, and reasoning about SLD using search trees.

3 Binary Numerals

We represent numerals as lists of binary digits in little-endian order (least signif-
icant bit first), with zero represented as the empty list. A zero bit is denoted by
o (lower-case ‘oh’) and a one bit is denoted by l (lower-case ‘el’)—to distinguish
a number from its representation. For example, the terms [], [l], [o,l], [l,l],
[o,o,l] represent 0 through 4. The last bit of a positive numeral must be l.
Our code below takes special care to maintain this well-formedness condition. It
is trivial to convert between this and Prolog’s native representations of integers.

We often use the auxiliary one-clause predicates zero/1, pos/1, and gtl/1:

zero([]).
pos([_|_]).
gtl([_,_|_]).

The goal zero(N) succeeds if N is zero. The goal pos(N) succeeds if N is
positive. The goal gtl(N) succeeds if N is at least two.

The predicate genb/1 below expresses the implicit type of binary numerals.

genb([]).
genb([l|X]) :- genb(X).
genb([o|X]) :- pos(X), genb(X).

The presence of pos(X) in the last clause ensures that the last bit of a positive
numeral is l. The code below contains similar guarding occurrences of pos/1.

Recall that one challenge of binary arithmetic is that a numeral is not struc-
turally part of its successor. However, such a notion of inclusion exists (with the
attendant induction principle) if we consider the ‘length’ of a binary number, i.e.,
the number of bits in its binary representation. More precisely, the length ‖n‖
of a numeral n is �log2 n	+ 1 if n > 0, and 0 if n = 0. We define lessl/2 by

lessl([],[_|_]).
lessl([_|X],[_|Y]) :- lessl(X,Y).

It has the meaning and form of the unary less in §2.3—and the same termination
properties—but compares the length of binary numbers rather their magnitude.

Pure, Declarative, and Constructive Arithmetic Relations 75

4 Addition and Subtraction

Our treatment of addition is inspired by hardware full-adders and multi-bit
adders, as found in a digital computer’s arithmetic logic unit [11]. A one-bit full-
adder full1_adder(Cin, A, B, S, Cout) relates two input bits A, B and the incom-
ing carry bit Cin with the sum bit S and the outgoing carry bit Cout, according to
the equation Cin+A+B = S+2Cout. In Prolog, we define full1_adder/5by enu-
merating eight facts: full1_adder(o,o,o,o,o)., full1_adder(o,l,o,l,o).,
etc. The multi-bit adder fulln_adder(Cin, A, B, S) relates the incoming carry
bit Cin (either o or l), two binary numbers A, B, and their sum S, according
to the equation Cin + A + B = S. It is defined by recursively combining one-bit
adders as in a ripple-carry adder of digital logic, only in our case, the summands’
bitwidths need not be the same or limited.

fulln_adder(o,A,[],A).
fulln_adder(o,[],B,B) :- pos(B).
fulln_adder(l,A,[],R) :- fulln_adder(o,A,[l],R).
fulln_adder(l,[],B,R) :- pos(B), fulln_adder(o,[l],B,R).

fulln_adder(Cin,[l],[l],R) :- R = [R1,R2],
full1_adder(Cin,l,l,R1,R2).

fulln_adder(Cin,[l],[BB|BR],[RB|RR]) :- pos(BR), pos(RR),
full1_adder(Cin,l,BB,RB,Cout),
fulln_adder(Cout,[],BR,RR).

fulln_adder(Cin,A,[l],R) :- gtl(A), gtl(R),
fulln_adder(Cin,[l],A,R).

fulln_adder(Cin,[AB|AR],[BB|BR],[RB|RR]) :-
pos(AR), pos(BR), pos(RR),
full1_adder(Cin,AB,BB,RB,Cout),
fulln_adder(Cout,AR,BR,RR).

The first four clauses above deal with the cases of a summand being zero. The
next three clauses handle the cases of a summand being one. The last clause adds
numbers at least two bits wide. We take care to keep clauses from overlapping, so
the solution sequence of a fulln_adder goal is a solution set. The splitting of the
cases and the many occurrences of pos/1 are necessary to keep all numerals in
a solution ‘well-typed’: If logic variables in a solution are instantiated according
to their implicit types, we never see a list whose last element unifies with o.

This multi-bit adder expresses binary addition, subtraction, and ordering:

add(A,B,C) :- fulln_adder(o,A,B,C).
sub(A,B,C) :- add(B,C,A).
less(A,B) :- pos(X), add(A,X,B).

Our predicate add/3 for binary numerals satisfies Prop. 5 (by induction on
4Cin +3A+B) and Prop. 6. However, due to carry propagation (clauses 4 and 6
of fulln_adder), Prop. 7 and Prop. 8 no longer accurately describe the solution

76 O. Kiselyov et al.

sets of binary add: the goal add(X, Y, Z), with either X or Y ground and the
other arguments being distinct free variables, has an infinite solution set.

Prop. 9 holds (without X being always ground) only in the case of SLD with
interleaving; for SLD, we can develop a binary addition predicate that covers half
of the domain of addition, as in §2.3. The proofs begin by unrolling the recursion
in clauses 3, 4, and 7 of fulln_adder (splitting cases for clauses 3 and 4), so
that fulln_adder invokes itself recursively only for shorter arguments.

5 Multiplication

Binary multiplication may seem an obvious generalization of unary multiplica-
tion. The most complex case is to multiply an odd number by a positive one,
(2N +1)M = 2(NM)+M , because it involves addition. One may think that the
approach in mul in §2.3 will work here. Alas, binary addition does not satisfy
Prop. 7, so we must turn to a much less obvious solution.

mul([],M,[]).
mul(N,[],[]) :- pos(N).
mul([l],M,M) :- pos(M).
mul([o|NR],M,[o|PR]) :- pos(M), pos(NR), pos(PR), mul(NR,M,PR).
mul([l|NR],M,P) :- pos(M), pos(NR), gtl(P),

lessl3(P1,P,[l|NR],M),
mul(NR,M,P1), add([o|P1],M,P).

This solution relies on a seemingly contrived predicate lessl3:

lessl3([],[_|_],_,_).
lessl3([_|P1R],[_|PR],[],[_|MR]) :- lessl3(P1R,PR,[],MR).
lessl3([_|P1R],[_|PR],[_|NR],M) :- lessl3(P1R,PR,NR,M).

The goal lessl3(P1, P, N, M) relates four numerals such that ‖P1‖ < min(‖P‖,
‖N‖ + ‖M‖ + 1). As long as the arguments of the goal, however instantiated,
share no logic variables, the goal has a solution set. In any solution, P1 is a
numeral whose bits may be free but whose length is fixed. We call such numerals
L-instantiated. Moreover, whenever P1, P , or both N and M are L-instantiated,
the solution set is finite.

In the code for binary mul above, lessl3 occurs in a clause that is selected
when multiplying an odd number 2N +1 (where N > 0) by a positive number M
to yield P . Under these conditions, clearly �log2 NM	 is less than both �log2 P 	
and �log2(2N + 1)	 + �log2 M	 + 2, so the constraint imposed by lessl3 does
not affect the declarative meaning of mul. The guarantee of lessl3 mentioned
above lets us prove Prop. 10 and Prop. 11 for binary multiplication. For Prop. 11,
lessl3 ensures that P1 is L-instantiated, so we can use induction to prove that
mul(N, M, P) with an L-instantiated P has a finite solution set.

The important role of lessl3 can be informally explained as follows. Given
the goal mul(X, Y, Z), when X and Y are instantiated but Z is free, or when Z
is instantiated but X and Y are free, the search space is finite even though the

Pure, Declarative, and Constructive Arithmetic Relations 77

free variables can be instantiated an infinite number of ways: the length of the
product limits the lengths of the multiplicands, and vice versa. The predicate
lessl3 enforces these limits, even though our code cannot distinguish these two
cases by determining which arguments are instantiated.

The mul predicate also satisfies Prop. 13 (the proof again relies on the proper-
ties of lessl3). As in the unary case, using SLD without interleaving, we cannot
cover the whole domain of natural multiplication—but we can cover half of it.
The technique is essentially the same as explained for unary multiplication.

6 Division, Exponentiation, and Logarithm

Our predicate for division with remainder div(N, M, Q, R) relates four natural
numbers such that N = M ·Q + R < M · (Q + 1). The implementation is quite
complex so as to finitely fail as often as possible: for example, not only when the
divisor M is zero, but also in the case div([o |X], [o, l], Q, [l]) with free X and
Q, as no even number divided by 2 gives the remainder 1. Our algorithm is akin
to long division as taught in elementary school, only done right-to-left. At each
step, we determine at least one bit of the quotient in finite time.

First, we handle the easy case when the divisor M is bigger than the divi-
dend N , so Q = 0 and N = R.

div(N,M,[],R) :- N = R, less(N,M).

Otherwise, Q must be positive. The second easy case is when N is at least M
and has the same length as M .

div(N,M,[l],R) :- samel(N,M), add(R,M,N), less(R,M).

This code relies on the auxiliary predicate samel, which holds if its two argu-
ments are binary numerals with the same number of digits.

samel([],[]). samel([_|X],[_|Y]) :- samel(X,Y).

The main case of division is when N has more digits than M . The key is to
represent N = M ·Q + R < M · (Q + 1) as the conjunction of the two relations

2l+1R1 = MQ2 + R −N2 and N1 = MQ1 + R1

where

N = 2l+1N1 + N2, Q = 2l+1Q1 + Q2, l = ‖R‖,

and N2 and Q2 are at most l + 1 long. Given l, then, we can decide the first
relation. Because 0 ≤ R1 < M , we can invoke div(N1, M, Q1, R1) recursively to
decide the second relation. That gives us a convenient induction principle: either
N1 is zero and so Q1 and MQ2 + R − N2 are both zero, or N1 is positive and
shorter than N . These two cases correspond to the disjunction below.

78 O. Kiselyov et al.

div(N,M,Q,R) :- lessl(M,N), less(R,M), pos(Q),
split(N,R,N1,N2), split(Q,R,Q1,Q2),
(

N1 = [],
Q1 = [],
sub(N2,R,Q2M),
mul(Q2,M,Q2M)

;
pos(N1),
mul(Q2,M,Q2M),
add(Q2M,R,Q2MR),
sub(Q2MR,N2,RR),
split(RR,R,R1,[]),
div(N1,M,Q1,R1)

).

The calls to lessl/2 and less/2 at the beginning of this code ensure that M and
then R are both L-instantiated. The code also relies on the predicate split/4 to
‘split’ a binary numeral at a given length: The goal split(N, R, N1, N2) holds
if N = 2l+1N1 + N2 where l = ‖R‖ and N2 < 2l+1. The goal should be invoked
only when R is L-instantiated, which is the case in the div code above. The goal
has a finite solution set, in which N2 is L-instantiated in every solution.

split([], _, [], []).
split([o,B|N], [], [B|N], []).
split([l|N], [], N, [l]).

split([o,B|N], [_|R], N1, []) :- split([B|N],R,N1,[]).
split([l|N], [_|R], N1, [l]) :- split(N,R,N1,[]).
split([B|N], [_|R], N1, [B|N2]) :- pos(N2), split(N,R,N1,N2).

Our predicate log(N, B, Q, R) relates four numbers such that N = BQ +
R < BQ+1, so it implements exponentiation, logarithm, and n-th root. Our
implementation uses an upper bound on R, namely RB < N(B− 1), and upper
and lower bounds on Q, namely (‖B‖− 1)Q < ‖N‖ and ‖N‖− 1 < ‖B‖(Q+ 1).
These bounds constrain the search just as lessl3 does for binary multiplication
in §5. Because the base-2 case is so simple, we treat it separately.

7 Related Work

We first presented arithmetic predicates over binary natural numbers (including
division and logarithm) in a book [12]. The book used miniKanren [13], which
like its big sister Kanren [6] is an embedding of logic programming in Scheme.
That presentation had no detailed explanations, proofs, or formal analysis, which
is the focus of this paper.

Braßel, Fischer, and Huch’s paper [7] appears to be the only previous descrip-
tion of declarative arithmetic. It is a practical paper couched in the programming

Pure, Declarative, and Constructive Arithmetic Relations 79

language Curry. It argues for declaring numbers and their operations in the lan-
guage itself, rather than using external numeric data types and operations. It
also uses a little-endian binary encoding of natural numbers (later extended to
signed integers). Our encodings differ, however, in that our representation of
natural numbers includes zero.

Whereas our implementation of arithmetic uses a pure logic programming lan-
guage, Braßel, Fischer, and Huch use a non-strict functional-logic programming
language. Therefore, our implementations use wildly different strategies and are
not directly comparable. Also, we implement the logarithm relation.

Braßel, Fischer, and Huch leave it to future work to prove termination of
their predicates. In contrast, the thrust of this paper is to formulate and prove
decidability of our predicates under DFS or DFS with interleaving. To ensure
decidability and completeness under generally incomplete strategies like DFS,
our implementation is much more complex.

We present no benchmarks, but we are encouraged by Braßel, Fischer, and
Huch’s conclusion that declarative arithmetic is practical—and, in fact, has been
used satisfactorily as part of a Haskell-based Curry system.

Our notion of solution sets can be defined in terms of Lloyd’s SLD-trees [4].
Unlike Lloyd, we use solution sets not to show SLD incomplete. Rather, we
use them to characterize the solutions generated by programs using SLD. Our
solution sets are coarser, and thus easier to reason with, than the partial trace
semantics often used to study termination of constraint logic programs [14].

Our approach is minimalist and pure; therefore, its methodology can be used
in other logic systems, specifically, Haskell type classes. Hallgren [15] first imple-
mented (unary) arithmetic in such a system, but with restricted modes. Kiselyov
[16, §6] treats decimal addition more relationally. Kiselyov and Shan [9] first
demonstrated all-mode arithmetic relations for arbitrary binary numerals, so to
represent numerical equality and inequality constraints in the type system. Their
type-level declarative arithmetic library enabled resource-aware programming in
Haskell with expressive static guarantees.

8 Conclusions

In a pure logic programming system, we have declared decidable arithmetic of un-
restricted unary and binary natural numbers: addition, multiplication, division
with remainder, exponentiation, and logarithm with remainder. The declared
relations have unlimited domain and are free from any mode restrictions or an-
notations. We have proven that our arithmetic predicates are fully decidable and
faithfully represent the corresponding arithmetic relations. Our technique can be
easily extended to full integers (i.e., a tuple of the sign and a natural number).

The gist of our approach is to limit the search space by a balancing act of
computing bidirectional bounds from arguments of unknown instantiatedness.
For example, the key to decidable multiplication is to limit the search using
bounds that the inputs place on each other, without testing whether any input
is instantiated. We also rely on the ability to finitely represent infinite domains

80 O. Kiselyov et al.

using logic variables, so that goals with infinite denotations may have only a
finite solution set. Our notion of solution sets and the associated proof techniques
are not specific to arithmetic and SLD; rather, they appear applicable to logic
programming in other domains using a variety of search strategies.

References

[1] Apt, K.R.: Principles of Constraint Programming. Cambridge University
Press, Cambridge (2003)

[2] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions
on Database Systems 22(3), 364–418 (1997)

[3] Kowalski, R.: Predicate logic as programming language. In: Rosenfeld,
J.L. (ed.) Information Processing, pp. 569–574. North-Holland, Amsterdam
(1974)

[4] Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg
(1987)

[5] Kiselyov, O., Shan, C.c., Friedman, D.P., Sabry, A.: Backtracking, inter-
leaving, and terminating monad transformers. In: Proceedings of the Inter-
national Conference on Functional Programming, pp. 192–203 (2005)

[6] Friedman, D.P., Kiselyov, O.: A declarative applicative logic programming
system (2005), http://kanren.sourceforge.net/

[7] Braßel, B., Fischer, S., Huch, F.: Declaring numbers. In: Workshop on Func-
tional and (Constraint) Logic Programming, pp. 23–36 (2007)

[8] Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
[9] Kiselyov, O., Shan, C.c.: Lightweight static resources: Sexy types for em-

bedded and systems programming. In: Draft Proceedings of Trends in Func-
tional Programming, Seton Hall University (2007), TR-SHU-CS-2007-04-1

[10] Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 445–532. Elsevier, Amster-
dam (2001)

[11] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative
Approach, 3rd edn. Morgan Kaufmann, San Francisco (2002)

[12] Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT
Press, Cambridge (2005)

[13] Byrd, W.E., Friedman, D.P.: From variadic functions to variadic relations:
A miniKanren perspective. In: 7th Scheme and Functional Programming
Workshop, University of Chicago, pp. 105–117 (2006), TR-2006-06

[14] Colussi, L., Marchiori, E., Marchiori, M.: On termination of constraint logic
programs. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp.
431–448. Springer, Heidelberg (1995)

[15] Hallgren, T.: Fun with functional dependencies.
http://www.cs.chalmers.se/∼hallgren/Papers/wm01.html (2001)

[16] Kiselyov, O.: Number-parameterized types. The Monad.Reader 5 (2005)

http://kanren.sourceforge.net/
http://www.cs.chalmers.se/~hallgren/Papers/wm01.html

On-Demand Refinement of Dependent Types

Hiroshi Unno1 and Naoki Kobayashi2

1 University of Tokyo
uhiro@yl.is.s.u-tokyo.ac.jp

2 Tohoku University
koba@ecei.tohoku.ac.jp

Abstract. Dependent types are useful for statically checking detailed
specifications of programs and detecting pattern match or array bounds
errors. We propose a novel approach to applications of dependent types
to practical programming languages: Instead of requiring programmers’
declaration of dependent function types (as in Dependent ML) or trying
to infer them from function definitions only (as in size inference), we mine
the output specification of a dependent function from the function’s call
sites, and then propagate that specification backward to infer the input
specification. We have implemented a prototype type inference system
which supports higher-order functions, parametric polymorphism, and
algebraic data types based on our approach, and obtained promising
experimental results.

1 Introduction

Dependent types are useful for statically verifying that programs satisfy detailed
specifications and for detecting data-dependent errors such as pattern match
or array bounds errors. For example, the function λx.x + 1 is given a type
int → int in the simple type system, but with dependent types, it is given a
type Πx : int.{y : int | y = x + 1}, so that we can conclude that the array
access a[(λx.x + 1) 0] is safe (if the size of array a is more than 1).

There are several approaches to introducing dependent types into program-
ming languages. Size inference [1,2,3] fixes the shape of dependent types a priori
(e.g., a list type is of the form τ listn where n is the length of a list), and
tries to infer a dependent type of a function automatically from the function’s
definition. Shortcomings of that approach are inflexibility and inefficiency; for
example, it would be hard to infer that a sorting function indeed returns a sorted
list. Dependent ML (DML) [4,5] lets users declare the dependent type of each
function manually, and checks whether the declaration is correct. A shortcoming
of that approach is that it is often cumbersome for users to declare types for all
functions. For example, consider the following function isort for insertion sort,
and suppose that one wants to verify that isort returns a sorted list.

fun insert (x, xs) = match xs with

Nil _ -> Cons(x, Nil ())

| Cons(y, ys) -> if x <= y then Cons(x, xs) else Cons(y, insert (x, ys))

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 81–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

82 H. Unno and N. Kobayashi

fun isort xs = match xs with

Nil _ -> Nil ()

| Cons(x, xs’) -> insert (x, isort xs’)

It would be fine to declare that isort returns a sorted list (because that is indeed
the property to be verified). It is, however, cumbersome to declare a dependent
type of the auxiliary function insert as well. Knowles and Flanagan [6] propose
a complete type reconstruction algorithm for a certain dependent type system,
but the inferred types include fixed-point operators on predicates, so that the
inferred types alone cannot be used for actual verification or bug finding (without
a reasonable algorithm for computing fixed-points).

We propose an alternative, complementary approach to the previous ap-
proaches discussed above. Instead of requiring programmers’ declaration of de-
pendent function types or trying to infer them from function definitions only, we
infer a function’s type using information about not only the function’s definition
but also the function’s call sites. Another related, distinguishing feature of our
approach is that types are refined on-demand ; we start with the simplest type
for each function, and refine the type gradually, when it turns out that more
precise type information is required by a call site of the function. For example,
the function f

�
= λx.x+1 is first given a type int → int, but if a calling context

a[f y] is encountered, the type is refined to Πx : int.{y : int | y = x + 1} (since
from the calling context, we know that the actual return value of f is important
for the whole program to be typed). For another example, consider the sort-
ing function isort above. The auxiliary function insert is first given a type
int list → int list. If the type of isort is declared as int list → ordlist
(where ordlist denotes the type of sorted lists), however, we can find from the
call site insert (x, isort xs′) that the type of the output of insert should be
ordlist. We can then propagate that information backward to infer the type
of an argument of insert (see Section 5 for a more detailed description of this
refinement step). In this manner, we expect that our approach can deal with
more flexible dependent types (without losing efficiency) than the size infer-
ence. Indeed, we have already implemented the prototype inference system and
succeeded in verifying the sorting function above.

The idea of on-demand type refinement mentioned above, so called type-error-
guided type refinement, has been inspired from that of counter-example-guided
abstraction refinement (CEGAR) in abstract model checking [7]. In CEGAR,
the coarsest abstraction is first used for model checking; the predicates used for
abstraction are gradually refined when a false counter-example is encountered. In
our approach, simple types are first used for type-checking. If the type-checking
fails, types are gradually refined by inspecting a fragment of the program which
causes the failure (until no further refinement is possible, when a type error is
reported).

To formalize the idea mentioned above, Section 2 introduces a simple first-
order functional language with assert expressions and a dependent type system
for it. The assert expressions are used to model array bound checks and user-
supplied specifications. Section 3 formalizes our type inference algorithm, and

On-Demand Refinement of Dependent Types 83

proves its soundness. In Section 4, we briefly discuss extension of the type infer-
ence algorithm to deal with higher-order functions, parametric polymorphism,
and algebraic data types. Section 5 reports on a prototype implementation of
our algorithm (for the full language, including higher-order functions, parametric
polymorphism, and algebraic data types) and experiments. Section 6 discusses
related work and Section 7 concludes.

2 Language and Dependent Type System

We use a call-by-value, first-order functional language to present our type infer-
ence algorithm. We extend the language with higher-order functions in Section 4.
The language is essentially an “implicitly-typed” version of a subset of DML [4,5]
extended with assert expressions.

The syntax of the language is defined as follows:

(expressions) e ::= x | n | (e1, e2) | fun f x = e1 in e2 | f e

| let x = e1 in e2 | let (x1, x2) = e1 in e2

| if e1 then e2 else e3 | assert e1 in e2

(values) v ::= n | (v1, v2) | fun f x = e

Here, x, n, and f are meta-variables ranging over a set of variables, integer
constants, and function names respectively. We write FV(e) for the set of free
variables in e. We assume given primitive operators such as +, ×, = and ≤ on
integers, and ¬, ∧, and ⇒ on booleans. Actually, booleans are represented by
integers (the truth � by a non-zero integer, and the false ⊥ by zero). Thus,
e1 ≤ e2 returns 1 if the value of e1 is less than or equal to that of e2, and returns
0 otherwise. In the function definition fun f x = e1 in e2, f may appear in e1

for recursive calls. However, we do not allow mutually recursive functions in the
language for the sake of simplicity. Our framework can be easily extended to deal
with mutually recursive functions. An assertion assert e1 in e2 evaluates to e2

only if the conditional e1 holds. Otherwise, it gets stuck. Assertions are used for
modeling array bounds errors and user-supplied specifications. For example, the
array access a[x] is modeled as assert 0 ≤ x < h in · · ·, where h is the size of
a. See the full paper [8] for the operational semantics.

We introduce a dependent type system, which ensures that well-typed pro-
grams never get stuck. In particular, an assertion assert e1 in e2 is accepted
only if e1 is statically guaranteed to be non-zero. The type system is used to
state properties of our type inference algorithm in Section 3. The type system
is undecidable, since the constraint language includes integer addition and mul-
tiplication.

The syntax of types is defined as follows:

(base types) t ::= intρ | t1 × t2

(expression types) τ ::= {t | φ}
(function types) σ ::= ∀ρ̃.〈φ | t → τ〉
(constraints) φ ::= ρ | n | op(φ̃) | ∀ρ.φ | ∃ρ.φ

(type environments) Γ ::= ∅ | Γ, x : t | Γ, f : σ

84 H. Unno and N. Kobayashi

A constraint, denoted by φ, is an index variable ρ, a constant n, an operator
expression op(φ̃), or a quantifier expression. õ signifies a list of objects o1, . . . , om

for some m ≥ 0. We often write � for 1 and ⊥ for 0. Note that the set of operators
contains standard logical operators like ∧ and ¬.

The base type intρ is the type of an integer whose value is denoted by ρ. The
base type t1 × t2 is the type of pairs consisting of values with the types t1 and t2.
The expression type {t | φ} is a subtype of t whose index variables are constrained
by φ. For example, {intρ1×intρ2 | ρ1 > ρ2} is the type of integer pairs whose first
element is greater than the second element. The index variables in t are bound
in {t | φ}. The function type ∀ρ̃.〈φ | t → τ〉 is the type of functions that take
an argument of the type {t | φ} and return a value of the type τ . For example,
〈ρ1 > 0 ∧ ρ2 > 0 | intρ1 × intρ2 → {intρ3 | ρ3 = ρ1 + ρ2}〉 is the type of
functions that take a pair of positive integers as an argument, and return the sum
of the integers. The index variables in t and ρ̃ are bound in ∀ρ̃.〈φ | t → τ〉. We
often abbreviate ∀ρ̃.〈φ | t → τ〉 as ∀ρ̃.{t | φ} → τ if the index variables in t do not
occur in τ and as ∀ρ̃.t → τ if φ ≡ �. We assume that α-conversion is implicitly
performed so that bound variables are different from each other and free variables.

A typing judgment is of the form φ; Γ � e : τ . It reads that on the assumption
that index variables satisfy φ, the expression has the type τ under the type
environment Γ . For example, ρ > 0; x : intρ � x + 1 : {intρ′ | ρ′ > 1}.

x : t ∈ Γ ρ̃′ = FIV(t)
ρ̃ ∩ FIV(φ, Γ) = ∅

φ; Γ � x : {[ρ̃/ρ̃′]t | ρ̃ = ρ̃′} (T-Var)

φ;Γ � n : {intρ | ρ = n} (T-Int)

φ; Γ � e1 : {t1 | φ1}
φ; Γ � e2 : {t2 | φ2}

φ; Γ � (e1, e2) : {t1 × t2 | φ1 ∧ φ2}
(T-Pair)

φ ∧ φ1; Γ, f : σ, x : t1 � e1 : τ1

ρ̃ ∩ FIV(Γ, φ) = ∅
σ = ∀ρ̃.〈φ1 | t1 → τ1〉
φ; Γ, f : σ � e2 : τ2

φ;Γ � fun f x = e1 in e2 : τ2

(T-Let-Fun)

f : σ ∈ Γ φ � σ � τ1 → τ2

φ; Γ � e : τ1

φ; Γ � f e : τ2

(T-App)

φ; Γ � e1 : {t | φ′}
φ ∧ φ′; Γ, x : t � e2 : τ
FIV(t) ∩ FIV(τ) = ∅

φ; Γ � let x = e1 in e2 : τ
(T-Let)

φ; Γ � e1 : {t1 × t2 | φ′}
φ ∧ φ′; Γ, x1 : t1, x2 : t2 � e2 : τ

FIV(t1, t2) ∩ FIV(τ) = ∅
φ;Γ � let (x1, x2) = e1 in e2 : τ

(T-Let-Pair)

φ; Γ � e1 : {intρ | φ′}
φ ∧ ∃ρ.(φ′ ∧ ρ �= 0); Γ � e2 : τ
φ ∧ ∃ρ.(φ′ ∧ ρ = 0); Γ � e3 : τ

φ;Γ � if e1 then e2 else e3 : τ
(T-If)

φ; Γ � e1 : {intρ | ρ �= 0}
φ; Γ � e2 : τ

φ; Γ � assert e1 in e2 : τ
(T-Assert)

φ′
1; Γ � e : {t | φ′

2}
|= φ1 ⇒ (φ′

1 ∧ (φ′
2 ⇒ φ2))

φ1; Γ � e : {t | φ2} (T-Sub)

Fig. 1. Typing Rules

On-Demand Refinement of Dependent Types 85

The typing rules are given in Figure 1. In the figure, FIV(o) is the set of
free index variables in some object o. The relation η |= φ means that an index
environment η (a function from index variables to integers) satisfies a constraint
φ. We write |= φ if ∅ |= ∀ρ̃.φ, where {ρ̃} = FIV(φ).

The subtyping relation φ � σ � σ′ on function types is defined by:

|= φ ⇒ ∀ρ̃′, FIV(t1).(φ′
1 ⇒ ∃ρ̃.(φ1 ∧ ∀FIV(t2).(φ2 ⇒ φ′

2)))

φ � ∀ρ̃.〈φ1 | t1 → {t2 | φ2}〉 � ∀ρ̃′.〈φ′
1 | t1 → {t2 | φ′

2}〉

The type system ensures that evaluation of a well-typed, closed expression
(i.e., an expression e such that �; Γ0 � e : τ , where Γ0 is the type environment
for primitive operators) never gets stuck: See [8] for a formal discussion.

3 Type Inference Algorithm

This section formalizes our type inference algorithm and proves its soundness.
First, we extend the syntax of constraints with predicate variables to denote
unknown predicates. We also introduce extended type environments to model an
intermediate state for on-demand type refinement.

(constraints) φ ::= · · · | P (φ̃)
(constraint substitutions) S ::= ∅ | S, P �→ λρ̃.φ

(extended function types) T ::= (σ; φ; S̃)
(extended type environments) Δ ::= ∅ | Δ, x : t | Δ, f : T

Here, P is a meta-variable ranging over the set of predicate variables, which are
used to express unknown specifications of functions. We write FPV(o) for the set
of free predicate variables in some object o. Constraint substitutions map pred-
icate variables to predicates (i.e., functions from index variables to constraints).
An extended type environment Δ maps a function name f to an extended func-
tion type which is a triple of the form (σ; φ; S̃). Here, σ is a template for the type
of f , which may contain predicate variables. For example, a template for a func-
tion from integers to integers is ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉,
where ρ̃ denotes a sequence of index variables (whose length is unknown). The
second element φ is a constraint that records a sufficient condition on predicate
variables for the definition of f to be well-typed; this is used to avoid re-checking
the function’s definition when the function’s type needs to be refined. The third
element S̃ records solutions for φ (which are substitutions for predicate variables)
found so far.

The type inference algorithm is specified as inference rules for the 5-tuple
relation Δ � e : τ � φ; Δ′. Here, Δ, e, and τ should be regarded as inputs of
the algorithm, and φ and Δ′ as outputs of the algorithm. Intuitively, φ is a
sufficient condition for e to have type τ , and Δ′ describes types refined during
the inference. For example, let e, τ , and Δ be f(z), {intρ | ρ > 1}, and z :intρz ,

86 H. Unno and N. Kobayashi

f : (σ; φ1; {S}), where σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉, φ1 =
∀ρ̃, ρx.P (ρ̃, ρx) ⇒ ∀ρy.(ρy = ρx + 1 ⇒ Q(ρ̃, ρx, ρy)), and S = {P �→ λρx.�, Q �→
λ(ρx, ρy).�}. Then, φ and Δ′ would be ρz > 0 and z : intρz , f : (σ; φ1; {S, S′}),
where S′ is {P �→ λρx.ρx > 0, Q �→ λ(ρx, ρy).ρy > 1}.

The inference rules for the relation Δ � e : τ � φ; Δ′ (which are a declarative
description of our type inference algorithm) are given in Figures 2 and 3. Figure 3
shows the rules for function definitions and applications, and Figure 2 shows
the rules for other expressions. The sub-algorithm σ � σ′ � φ for computing a
sufficient condition φ for σ to be a subtype of σ′ is also defined in Figure 3. In the
figures, TypeOf(Δ, o) is a template for the type of some object o, obtained from
the simple type of o by decorating it with fresh index variables and predicate
variables. For example, if the simple type of o is int, then TypeOf(Δ, o) returns
intρ; if the simple type of o is int → int, TypeOf(Δ, o) returns ∀ρ̃.〈P (ρ̃, ρx) |
intρx → {intρy | Q(ρ̃, ρx, ρy)}〉.

In the rules in Figure 2, type inference proceeds in a backward manner: For
example, in B-Var, given the required type {t | φ} of the variable x, if x :
t′ ∈ Δ, we check whether |t| = |t′| (where |t| is the simple type obtained from t
by removing index variables). If the check succeeds, we produce the constraint
[t′/t]φ, which is the constraint obtained from φ by replacing each occurrence of
an index variable of t with the corresponding index variable of t′.

In B-Pair, given the required type {t1×t2 | φ} of the pair (e1, e2), we compute
the constraint φ2 which is sufficient for e2 to have {t2 | φ}. Then, we compute
the constraint φ1 which is sufficient for e1 to have {t1 | φ2}. The remaining rules
in Figure 2 can be read in a similar manner.

We now explain the rules for functions in Figure 3. In B-Let-Fun, a template
for the function’s type is first prepared (see the first line). We then check the
function’s definition, and compute a sufficient condition ψ on predicate variables
for the definition to be well-typed (see the second line). Then, we find a solution
S for ψ (i.e., a substitution such that |= S(ψ)) by using an auxiliary algorithm
Solve(FPV(σ); ψ), which is explained later. As a result, we obtain the input
specification of f which is sufficient for no assertion violation to occur in f . At
this stage, there is no requirement for the output of f , so that the inferred return
type of f is of the form {t | �}. Finally, we check e2 and produce φ2 and Δ′.
Note that f ’s type may be refined during the type inference for e2.

B-App is the rule for applications. From the type τ of f e and the simple
type of e, we prepare a template of f ’s type: {t | P (ρ̃)} → τ . The value of the
predicate variable P is computed by a sub-algorithm, expressed by using the
relation Δ � f : σ �{P} S; Δ′ (which is defined using B-Reuse and B-Refine:
see below). Finally, we check that the function’s argument e has the required
type {t | S(P (ρ̃))}.

We have two rules B-Reuse and B-Refine for the auxiliary judgment Δ�f :
σ �P̃ S; Δ′. The rule B-Reuse supports the case where the type of f in Δ is
precise enough to be a subtype of σ, while B-Refine supports the case where
the type of f needs to be refined. The rules are non-deterministic, in the sense
that both rules may be applied. In the actual implementation, B-Reuse is given

On-Demand Refinement of Dependent Types 87

a higher priority, so that B-Refine is used only when applications of B-Reuse

fail. For recursive calls and primitive operators, B-Refine is not used.
In B-Reuse, we pick up an already inferred type Sk(σ′), and match it with

the required type σ. (Since the argument type of σ is a predicate variable, we
actually match the return types of σ and σ′ here.) The constraint ψ, computed
by using B-Sub, is a sufficient condition for Sk(σ′) to be a subtype of σ. We
then solve ψ by using Solve.

In B-Refine, we match the template σ′ of the function’s type with the re-
quired type σ, and compute a sufficient condition ψ for σ′ to be a subtype of
σ. We then compute a solution for ψ ∧ φ by using Solve. The key point here is
that both information about the function’s definition (expressed by φ) and that
about the call site (expressed by ψ) are used to compute the function’s type.
Solve can use predicates occurring in ψ as hints for computing a solution of ψ∧φ.

x : t′ ∈ Δ |t| = |t′|
Δ � x : {t | φ} � [t′/t]φ; Δ

(B-Var)

Δ � n : {intρ | φ} � [n/ρ]φ; Δ
(B-Int)

Δ � e2 : {t2 | φ} � φ2; Δ2

Δ2 � e1 : {t1 | φ2} � φ1; Δ1

Δ � (e1, e2) : {t1 × t2 | φ} � φ1; Δ1

(B-Pair)

t = TypeOf(Δ, e1)
Δ, x : t � e2 : τ � φ2; Δ2

Δ2 \ x � e1 : {t | φ2} � φ1; Δ1

Δ � let x = e1 in e2 : τ � φ1; Δ1

(B-Let)

t1 × t2 = TypeOf(Δ, e1)
Δ, x1 : t1, x2 : t2 � e2 : τ � φ2; Δ2

Δ2 \ {x1, x2} � e1 : {t1 × t2 | φ2} � φ1; Δ1

Δ � let (x1, x2) = e1 in e2 : τ � φ1; Δ1

(B-Let-Pair)

Δ � e2 : τ � φ2; Δ2 Δ2 � e3 : τ � φ3; Δ3

ρ : fresh φ = (ρ �= 0 ∧ φ2) ∨ (ρ = 0 ∧ φ3)
Δ3 � e1 : {intρ | φ} � φ1; Δ1

Δ � if e1 then e2 else e3 : τ � φ1; Δ1

(B-If)

ρ : fresh Δ � e1 : {intρ | ρ �= 0} � φ1; Δ1

Δ1 � e2 : τ � φ2; Δ2

Δ � assert e1 in e2 : τ � φ1 ∧ φ2; Δ2

(B-Assert)

Fig. 2. Type inference rules (for basic expressions)

Constraint Solving. We now describe a heuristic algorithm Solve(P̃ ; ϕ) to obtain
a solution for ϕ (i.e., a substitution for the predicate variables P̃ that satisfy ϕ).

If ϕ contains a subformula of the form ∀ρ̃.(P (ρ̃) ⇒ ψ(ρ̃, P)), and ψ(ρ̃, P)
does not contain negative occurrences of P , then the algorithm tries to compute
the greatest fixed-point of F = λP.λρ̃.ψ(ρ̃, P) by iterations from λρ̃.� (i.e.,
by computing Fn(λρ̃.�) for n = 1, 2, . . .). (As a special case, if ψ(ρ̃, P) does
not contain P , then the iteration immediately converges with the solution P =
λρ̃.ψ(ρ̃, P).) The algorithm also uses widening [9] to accelerate convergence.

If the above iteration does not converge, the algorithm chooses a new starting
point of iterations by extracting a sub-formula of ψ(ρ̃, P) which does not contain
P and generalizing its constants. This phase roughly corresponds to predicate

88 H. Unno and N. Kobayashi

σ = ∀ρ̃.〈φ | t → τ1〉 = TypeOf(Δ, fun f x = e1)
Δ, f : σ, x : t � e1 : τ1 � φ1; Δ1, f : σ, x : t ψ = ∀ρ̃, FIV(t).(φ ⇒ φ1)

S = Solve(FPV(σ); ψ) Δ1, f : (σ;ψ; {S}) � e2 : τ � φ2; Δ2

Δ � fun f x = e1 in e2 : τ � φ2; Δ2 \ f
(B-Let-Fun)

t = TypeOf(Δ, e) ρ̃ = FIV(t) P : fresh
Δ � f : {t | P (ρ̃)} → τ �{P} S; Δ1 Δ1 � e : {t | S(P (ρ̃))} � φ2; Δ2

Δ � f e : τ � φ2; Δ2

(B-App)

f : (σ′; φ; {Sj}m
j=1) ∈ Δ 1 ≤ k ≤ m Sk(σ′) � σ � ψ S = Solve(P̃ ; ψ)

Δ � f : σ �P̃ S; Δ
(B-Reuse)

Δ = Δb, f : (σ′; φ; {Sj}m
j=1), Δa σ′ � σ � ψ

dom(S) = P̃ dom(Sm+1) = FPV(σ′) S, Sm+1 = Solve(P̃ ∪ FPV(σ′); ψ ∧ φ)

Δ � f : σ �P̃ S; Δb, f : (σ′; φ; {Sj}m+1
j=1), Δa

(B-Refine)

φ = ∀ρ̃′, FIV(t1).(φ
′
1 ⇒ ∃ρ̃.(φ1 ∧ ∀FIV(t2).(φ2 ⇒ φ′

2)))

∀ρ̃.〈φ1 | t1 → {t2 | φ2}〉 � ∀ρ̃′.〈φ′
1 | t1 → {t2 | φ′

2}〉 � φ
(B-Sub)

Fig. 3. Type inference rules (for functions)

discovery in abstract model checking. Unlike model checking, however, we do not
repeat the whole verification process; we just redo the fixed-point computation.

We use the following examples to illustrate how type inference works.

Example 1. fun pred x = assert x > 0 in x − 1 in assert e1 = pred e2 in ()
By B-Let-Fun, we first check the definition of pred. We prepare the template
σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉 for the type of pred. Then
we check Δ � assert x > 0 in x − 1 : {intρy | Q(ρ̃, ρx, ρy)} � φ′; Δ′ for Δ =
Δ0, pred:σ, x:intρx , and obtain φ′ = ρx > 0∧Q(ρ̃, ρx, ρx−1). Here, Δ0 = +:〈� |
intρ1 × intρ2 → {intρ3 | ρ3 = ρ1 + ρ2}〉, . . . , ≤ :〈� | intρ1 × intρ2 → {intρ3 |
ρ3 = ρ1 ≤ ρ2}〉, . . . is the extended type environment for primitive operators.
Thus, we obtain the constraint φ = ∀ρ̃, ρx.P (ρ̃, ρx) ⇒ φ′ on P and Q. We then
check assert e1 = pred e2 in () under Δ1 = Δ0, pred : (σ; φ; {P �→ λρx.ρx >
0, Q �→ λ(ρx, ρy).�}). To check pred e2 against the type {intρy | ρ = ρy}, the
rule B-Refine is used. From σ � {intρx | R(ρx)} → {intρy | ρ = ρy} � ψ, we
get ψ = ∀ρx.R(ρx) ⇒ ∃ρ̃.(P (ρ̃, ρx)∧∀ρy.(Q(ρ̃, ρx, ρy) ⇒ ρ = ρy)). Then, ψ∧φ is
passed to Solve as an input. From the subformula Q(ρ̃, ρx, ρy) ⇒ ρ = ρy, Solve
infers that Q(ρ, ρx, ρy) ≡ ρ = ρy. From the subformula φ, P (ρ, ρx) is inferred
to be ρx > 0 ∧ ρ = ρx − 1. Thus, we obtain the refined type ∀ρ.〈ρx > 0 ∧ ρ =
ρx − 1 | intρx → {intρy | ρ = ρy}〉 of pred.

Example 2

fun fact x = if x≤0 then 1 else x ∗ fact (x − 1) in assert fact e > 0 in ()

On-Demand Refinement of Dependent Types 89

By B-Let-Fun, we first check the definition of fact. We prepare the template
σ = ∀ρ̃.〈P (ρ̃, ρx) | intρx → {intρy | Q(ρ̃, ρx, ρy)}〉 for the type of fact. Then we
check Δ � if x ≤ 0 then 1 else x ∗ fact (x − 1) : {intρy | Q(ρ̃, ρx, ρy)} � φ′; Δ′

for Δ = Δ0, fact : σ, x : intρx , and obtain φ′ = (ρx ≤ 0 ∧ φ1) ∨ (ρx > 0 ∧ φ2).
Here, φ1 = Q(ρ̃, ρx, 1) and φ2 = ∃ρ̃′.(P (ρ̃′, ρx − 1) ∧ ∀ρy.(Q(ρ̃′, ρx − 1, ρy) ⇒
Q(ρ̃, ρx, ρx ∗ ρy))) are respectively obtained from the then- and else- branches.
Thus, we obtain the constraint φ = ∀ρ̃, ρx.P (ρ̃, ρx) ⇒ φ′ on P and Q. We then
check assert fact e > 0 in () under Δ1 = Δ0, fact : (σ; φ; {P �→ λρx.�, Q �→
λ(ρx, ρy).�}). To check fact e against the type {intρy | ρy > 0}, the rule
B-Refine is used. From σ � {intρx | R(ρx)} → {intρy | ρy > 0} � ψ, we
get ψ = ∀ρx.R(ρx) ⇒ ∃ρ̃.(P (ρ̃, ρx) ∧ ∀ρy.(Q(ρ̃, ρx, ρy) ⇒ ρy > 0)). Then, ψ ∧ φ
is passed to Solve as an input. From the subformula Q(ρ̃, ρx, ρy) ⇒ ρy > 0,
Solve infers that Q(ρx, ρy) ≡ ρy > 0. From the subformula φ, P (ρx) is inferred
to be � as the result of the greatest fixed-point computation of the function
F = λP.λρx.(ρx ≤ 0 ∧ 1 > 0) ∨ (ρx > 0 ∧ P (ρx − 1) ∧ ∀ρy.(ρy > 0 ⇒ ρx ∗ ρy >
0)) ≡ λP.λρx.ρx ≤ 0 ∨ (ρx > 0 ∧ P (ρx − 1)) by iterations from λρx.�, which
converge immediately since F (λρx.�) ≡ λρx.ρx ≤ 0∨ρx > 0 ≡ λρx.�. Thus, we
obtain the refined type 〈� | intρx → {intρy | ρy > 0}〉 of fact.

3.1 Soundness

We say that Δ is valid if and only if for any f : (σ; φ; {Sj}m
j=1) ∈ Δ, |= Sk(φ)

holds for any k ∈ {1, . . . , m}.
Let us define the function (|Δ|), which maps an extended type environment Δ

to an ordinary type environment, as follows:

(|∅|) = ∅ (|Δ, x : t|) = (|Δ|), x : t

(|Δ, f : (σ; φ; {Sj}m
j=1)|) = (|Δ|), f : merge({Sj(σ)}m

j=1).

Here, merge({σj}m
j=1) = 〈φ1 ∨· · ·∨φm | t → {t′ | (φ1 ⇒ φ′

1)∧· · ·∧ (φm ⇒ φ′
m)}〉

if σj = 〈φj | t → {t′ | φ′
j}〉 for any j ∈ {1, . . . , m}. The following theorem states

that the type inference algorithm is sound with respect to the dependent type
system presented in Section 2. (We assume the soundness of Solve here; see the
full paper [8] for the proof).

Theorem 1 (Soundness). If Δ�e : τ � φ; Δ′ is derivable and Δ is valid then,
Δ′ is valid, � (|Δ′|) � (|Δ|), and φ; (|Δ′|) � e : τ is derivable.

Note that the type inference algorithm is not complete with respect to the type
system because of the incompleteness of Solve.

4 Extensions

In this section, we briefly discuss how to extend our type inference algorithm
formalized in Section 3 with higher-order functions, parametric polymorphism,
and algebraic data types. Interested readers are referred to the full paper [8] for
the formalization of the extended algorithm.

90 H. Unno and N. Kobayashi

Higher-Order Functions. A main new issue in handling higher-order functions is
what kind of template is prepared for higher-order functions. For example, for a
function of type (int → int) → int, one may be tempted to consider a template
of the form: 〈R1(P1, Q1) | 〈P1(ρ1) | intρ1 → {intρ2 | Q1(ρ1, ρ2)}〉 → {intρ3 |
R2(P1, Q1, ρ3)}〉, which is the type of a function that takes a function whose
precondition P1 and postcondition Q1 satisfy R1(P1, Q1), and returns an integer
that satisfies R2(P1, Q1, ρ3). This allows us to express a higher-order function
that is polymorphic on the property of a function argument, but requires a
significant extension of the constraint solving algorithm due to the presence of
higher-order predicates.

Instead, we consider only first-order predicate variables, and use a template
〈P1(ρ1) | intρ1 → {intρ2 | Q1(ρ1, ρ2)}〉 → {intρ3 | Q2(ρ3)} for (int → int) →
int. This allows us to extend the algorithm in Section 3 in a fairly straightfor-
ward manner. A shortcoming of the approach is that a higher-order function is
monomorphic on the property of function arguments; we use parametric poly-
morphism to overcome that disadvantage to some extent.

Parametric Polymorphism. The above treatment of higher-order functions some-
times results in too specific types. For example, the following type of map would
be inferred from the calling context (map (λx.x + 1) l) : {intw list | w ≥ 0}:

({intx | x≥−1}→{inty | y≥0})→{intz list | z≥−1}→{intw list | w≥0}.

This is too specific to be used in other calling contexts of map. To remedy the
problem, we use parametric polymorphism. In the case of map function, the
polymorphic type ∀α, β.(α → β) → α list → β list is assigned to map,
which can be instantiated to ({intx | P (x)} → {inty | Q(y)}) → {intz list |
P (z)} → {intw list | Q(w)} for any P and Q.

Algebraic Data Types. We require users to declare data type invariants and
dependent types for constructors of each user-defined algebraic data type as in
DML. Then, our algorithm infers dependent types of functions automatically un-
like in DML. We allow users to declare multiple types for each data constructor;
for example, for lists, users may declare Nil as ∀α.unit → {α listρ | ρ = 0}
and ∀ρ.unit → {ordlistρ1 | ρ1 = ρ} (see Section 5.1). This allows users to
specify multiple properties like the list length and sortedness.

The main new difficulty in type inference is how to handle multiple types de-
clared for each constructor as mentioned above. An extended type environmentΔ
now maps each function name to a set of extended function types, instead of
a single extended function type. For example, a list function may have the fol-
lowing four templates: { 〈P1(ρx) | int listρx → {int listρy | Q1(ρx, ρy)}〉,
〈P2(ρx) | int listρx → {ordlistρy | Q2(ρx, ρy)}〉, 〈P3(ρx) | ordlistρx →
{int listρy | Q3(ρx, ρy)}〉, 〈P4(ρx) | ordlistρx → {ordlistρy | Q4(ρx, ρy)}〉},
which are generated on-demand (based on calling contexts), in order to avoid a
combinatorial explosion of the number of templates. Once an appropriate tem-
plate is chosen, the rest of the algorithm is basically the same as the one described
in Section 3: constraints on predicate variables are generated and solved.

On-Demand Refinement of Dependent Types 91

5 Implementation and Experiments

We have implemented a prototype type inference system (available from http://
web.yl.is.s.u-tokyo.ac.jp/∼uhiro/depinf/) according to the formaliza-
tion in Section 3. It supports higher-order functions, parametric polymorphism,
and algebraic data types as described in Section 4. We adopted Cooper’s algo-
rithm for checking satisfiability of integer constraints. We report two kinds of
experiments to show the effectiveness of our approach. All the experiments were
performed on Intel Xeon CPU 3GHz with 3GB RAM.

5.1 Verification of Sorting Algorithms

This experiment shows an application of our system to infer the specifications for
auxiliary functions from the specification of the top-level function. The programs
used in the experiment are the insertion sort defined in Section 1, and a merge
sort. We discuss below the experiment for the insertion sort. The experiment for
the merge sort is similar: The merge sort program consists of a main function
msort and two auxiliary functions merge and msplit. The types of merge and
msplit have been automatically inferred from the type specification that msort
should return a sorted list only.

In the experiment, Nil is defined as a constructor having two types: ∀α.unit →
{α listρ | ρ = 0} and ∀ρ.unit → {ordlistρ1 | ρ1 = ρ}. Cons is defined as a
constructor having two types: ∀α.α × α listρ1 → {α listρ2 | ρ2 = ρ1 + 1} and
〈ρ1 ≤ ρ2 | intρ1 × ordlistρ2 → {ordlistρ3 | ρ3 = ρ1}〉. Here, α listρ is the
type of lists of length ρ, whose elements have the type α. ordlistρ is the type
of ordered lists, whose elements are integers greater than or equal to ρ. As in
this example, multiple types can be declared for each constructor in our system,
and an appropriate type is chosen depending on each context. We also added a
type declaration that isort should return a value of type {ordlistρ | �}. The
full paper [8] shows the whole code used in the experiment.

Our system succeeded in verifying the program, and inferred the following
types in 0.912 seconds:

insert : ∀ρ.〈ρ ≤ ρ1 ∧ ρ ≤ ρ2 | intρ1 × ordlistρ2 → {ordlistρ3 | ρ ≤ ρ3}〉,
isort : int list → ordlist.

The type of insertmeans that insert returns a sorted list whose head is greater
than or equal to the first argument or the head of the second argument if a sorted
list is given as the second argument.

We describe below how the type of the auxiliary function insert is refined.
From the definition of insert, the initial type assigned to insert is int ×
int list → int list. When the call site insert (x, isort xs′) (on the last
line of the definition of isort) is checked (with the required output specification
{ordlistρ | �}), the following new template for the type of insert is prepared:

∀ρ̃.〈P (ρ̃, ρ1, ρ2) | intρ1 × ordlistρ2 → {ordlistρ3 | Q(ρ̃, ρ1, ρ2, ρ3)}〉,

http://web.yl.is.s.u-tokyo.ac.jp/~uhiro/depinf/
http://web.yl.is.s.u-tokyo.ac.jp/~uhiro/depinf/

92 H. Unno and N. Kobayashi

Since the required type for insert (x, isort xs′) is {ordlistρ | �}, the sys-
tem first infers that Q(ρ1, ρ2, ρ3) ≡ �, and checks the constraint extracted from
the definition of isort. That type is, however, not precise enough to check the
recursive call insert(x, ys) (on the last line of the definition of insert), which
requires that ∀ρret.Q(ρ̃′, ρx, ρys, ρret) ⇒ ρy ≤ ρret holds. Thus, Q(ρ, ρ1, ρ2, ρ3)
is strengthened to ρ ≤ ρ3. Then, the system successfully infers the input speci-
fication P (ρ, ρ1, ρ2) ≡ ρ ≤ ρ1 ∧ ρ ≤ ρ2 by propagating the output specification.

5.2 Experiment with Functions from the OCaml List Module

In this experiment, we demonstrate an application of our system to learn specifi-
cations of library functions. We use the list module of the OCaml programming
language (http://caml.inria.fr/) as the target of the experiment.

The experiment proceeded as follows.
1. We manually translated the source code of the list module into our language.

We have also added the definition of list constructors Nil : ∀α.unit →
{α listρ | ρ = 0} and Cons : ∀α.α × α listρ1 → {α listρ2 | ρ2 = ρ1 + 1}.

2. We executed our system for the translated code above. No call site informa-
tion was used in this phase (except for the calls inside libraries).

3. Let f be a function whose argument type constraint inferred in the previous
step is not �. (For example, the argument type of combine was inferred to
be {α listρ1 × β listρ2 | ρ1 = ρ2} in Step 2.) Let g be another library
function. Then, we searched for code fragments of the form f (. . . g (. . .) . . .)
from various application programs. (Here, we have used Google Code Search,
http://www.google.com/codesearch/.)

4. We executed our system on the code fragments collected in the above step,
to refine the types of library functions.

The first and third steps of the experiment have been conducted manually, but
automation of those steps would not be difficult.

The result of the experiment is summarized in Table 1. Table 2 shows some
of the call sites used in the final step. The filed “time” indicates the time spent
in the second and fourth steps.

For most of the library functions, the inferred types are the same as the
expected types (modulo simplification of some constraints). For some functions,
the inferred types were less precise than expected: For example, the type of
rev map2 in Table 1 does not capture the property that the length of the returned
list is the same as that of the second argument. We expect that those types can
be refined by using more appropriate call sites.

As for the efficiency, our system was slow for length, map2, and combine.
We think that this is due to the present naive implementation of the fixed-point
computation algorithm, and that we can remedy the problem by using convex-
hull or selective hull operator [10] to keep the size of the constraints small.

As already mentioned, we have collected the call sites manually in step 3.
To confirm that our choice of call sites did not much affect the quality of the
inferred types, we have tested our system also with call sites other than those
shown in Table 2, and confirmed that similar types are inferred from them.

http://caml.inria.fr/
http://www.google.com/codesearch/

On-Demand Refinement of Dependent Types 93

Table 1. The specifications of the library functions from the OCaml list module. Our
system automatically inferred them from the call sites of the functions in Table 2.

function inferred specification time
name (sec.)

length ∀α.∀ρ, ρ′.{α listρ1 | ρ ≥ ρ1 ≥ ρ′} → {intρ2 | ρ ≥ ρ2 ≥ ρ′} 27.773
hd ∀α.{α listρ | ρ > 0} → α 0.004
tl ∀α.∀ρ.{α listρ1 | ρ1 > 0 ∧ ρ1 = ρ + 1} → {α listρ2 | ρ2 = ρ} 0.064
nth ∀α.{α listρ1 × intρ2 | ρ1 > ρ2 ≥ 0} → α 0.268
rev ∀α.∀ρ.{α listρ1 | ρ1 = ρ} → {α listρ2 | ρ2 = ρ} 0.540

append ∀α.∀ρ.{α listρ1 × α listρ2 | ρ1 + ρ2 = ρ} → 2.892
{α listρ3 | ρ3 = ρ}

map ∀α, β.(α → β) → ∀ρ.{α listρ1 | ρ1 = ρ} → {β listρ2 | ρ2 = ρ} 0.292
iter2 ∀α, β.(α × β → unit) → 0.276

{α listρ1 × β listρ2 | ρ1 = ρ2} → unit

map2 ∀α, β, γ.(α × β → γ) → 14.236
∀ρ.{α listρ1 × β listρ2 | ρ1 = ρ2 = ρ} → {γ listρ3 | ρ3 = ρ}

rev map2 ∀α, β, γ.(α × β → γ) → 0.448
{α listρ1 × β listρ2 | ρ1 = ρ2} → γ list

fold left2 ∀α, β, γ.(α × β × γ → α) → 0.276
{α × (β listρ1 × γ listρ2) | ρ1 = ρ2} → α

fold right2 ∀α, β, γ.(α × β × γ → γ) → 0.276
{(α listρ1 × β listρ2) × γ | ρ1 = ρ2} → γ

for all2 ∀α, β.(α × β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

exists2 ∀α, β.(α × β → bool) → 0.276
{α listρ1 × β listρ2 | ρ1 = ρ2} → bool

split ∀α, β.∀ρ.{(α × β) listρ1 | ρ1 = ρ} → 0.340
{α listρ2 × β listρ3 | ρ2 = ρ3 = ρ}

combine ∀α, β.∀ρ.{α listρ1 × β listρ2 | ρ1 = ρ2 = ρ} → 15.576
{(α × β) listρ3 | ρ3 = ρ}

Table 2. The call sites used to infer the specifications of the functions in Table 1. We
collected them from existing programs written in OCaml.

file name call site refined
functions

predabst.ml combine (a1, (tl a2)) tl

completion.ml nth (a3, (length a3 - 1)) length

xdr.ml let (a4, a5) = split a6 in split,

combine (a4, map f1 a5) map

pmlize.ml combine (rev a7, a8) rev

ass.ml combine (append (fst (split a9), fst (split a10)), append,

append (snd (split a9), snd (split a10))) split

printtyp.ml map2 f2 (a11, map2 f3 (a12, a13)) map2

ctype.ml fold_left2 f4 (a14, a15, combine (a16, a17)) combine

94 H. Unno and N. Kobayashi

6 Related Work

As already mentioned in Section 1, closely related to ours is the work on DML
[4,5] and size inference [1,2,3].

DML [4,5] is an extension of ML with a restricted form of dependent types.
DML requires users to declare function types, and then automatically performs
implicit argument inference and type checking. An advantage of our approach
is that users need not always declare function types, as demonstrated in the
verification of sorting functions.

Size inference can automatically infer size relations between arguments and
return values of functions [1,2,3]. A main difference is that the size inference tries
to infer as precise specification as possible from the definition of a function, while
our algorithm starts with simple types, and gradually refines the types based on
information about functions’ call sites. A main advantage of our approach is
that we can allow more flexible dependent types based on the user’s demand
(as demonstrated in the verification of sorting functions, where two kinds of
list types were declared). Another possible advantage of our approach (that has
yet to be confirmed by more experiments) is that the on-demand inference can
be more efficient, especially when precise specification is not required for most
functions. On the other hand, an advantage of size inference is that it can find
more precise specification than ours, and that it needs to infer the specification
of a function just once.

Rich type systems which include dependent types with datasort and index
refinements [11,12], and generalized algebraic data types [13,14,15] have been
introduced to practical programming languages so that non-trivial program in-
variants can be expressed as types [16,17]. Partial type inference in the spirit
of local type inference [18] is employed in those type systems, to reduce type
annotations. Type information can, however, be propagated locally, so that the
types of recursive functions cannot be inferred automatically.

Flanagan proposed hybrid type checking which allows users to refine data
types with arbitrary program terms [19]. A type reconstruction algorithm for
that type system has been proposed by Knowles and Flanagan [6]. The result of
their type inference algorithm, however contains fixed-point operators on predi-
cates, so that their algorithm alone can neither statically detect errors, nor pro-
duce useful documentations for the program. Their algorithm does not support
compound data structures and parametric polymorphism.

Theorem provers such as Coq [20] can also be used for writing dependently
typed programs [21,22]. Epigram [23] and Cayenne [24] support interactive de-
velopment of dependently typed programs: a program template and sub-goals
are automatically generated from a type. These systems greatly reduce users’
burden of writing programs and types. However, these systems currently seem
to be difficult to master for ordinary programmers without a knowledge of formal
logic.

As mentioned in Section 1, the idea of our approach has been inspired by
automatic predicate discovery and loop invariant inference in other verification
techniques, such as predicate abstraction [25,26,7,27], the induction-iteration

On-Demand Refinement of Dependent Types 95

method [28], on-demand loop invariant refinement by Leino [29], and constraint-
based invariant generation which solves unknown parameters in invariant tem-
plates [30,31]. Our main contribution in this respect is to bring those techniques
into the context of dependently-typed functional languages; The advantage of
using the type-based setting is that the verification technique can be smoothly
extended to support algebraic data types, higher-order functions, etc.

7 Conclusion

We have proposed a novel approach to applying dependent types to practical
programming languages: Our type inference system first assigns simple types
to functions, and refines them on demand, using information about both the
functions’ definitions and call sites. A prototype type inference system has been
already implemented and tested for non-trivial programs.

Future work includes an extension of our system for producing better error
messages. With the current system, when type inference fails, it is difficult for
the user to judge whether the failure is due to a bug of the program, or the
incompleteness of our type inference algorithm. Finding minimal unsatisfiable
constraints as in [16] would be useful for producing better error messages.

Our type inference algorithm presented in this paper assumes that all the
function definitions are available. To support separate type inference for each
module, we have to let users declare module interface (i.e., dependent types of
the exported functions). Some module interface may be, however, automatically
generated as shown in the experiments in Section 5.2.

Acknowledgments

We thank anonymous reviewers for their comments.

References

1. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL 1996, pp. 410–423. ACM Press, New York (1996)

2. Chin, W.N., Khoo, S.C.: Calculating sized types. In: PEPM 2000, pp. 62–72. ACM
Press, New York (1999)

3. Chin, W.N., Khoo, S.C., Xu, D.N.: Extending sized type with collection analysis.
In: PEPM 2003, pp. 75–84. ACM Press, New York (2003)

4. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: PLDI 1998, pp. 249–257. ACM Press, New York (1998)

5. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL 1999,
pp. 214–227. ACM Press, New York (1999)

6. Knowles, K., Flanagan, C.: Type Reconstruction for General Refinement Types. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 505–519. Springer, Heidelberg
(2007)

7. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: PLDI 2001, pp. 203–213. ACM Press, New York (2001)

96 H. Unno and N. Kobayashi

8. Unno, H., Kobayashi, N.: On-demand refinement of dependent types (Full version)
(January, 2008), http://web.yl.is.s.u-tokyo.ac.jp/∼uhiro/

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978, pp. 84–96. ACM Press, New York (1978)

10. Popeea, C., Chin, W.N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, Springer, Heidelberg (2008)

11. Dunfield, J.: Combining two forms of type refinements. Technical Report CMU-
CS-02-182, Carnegie Mellon University (September, 2002)

12. Dunfield, J., Pfenning, F.: Tridirectional typechecking. In: POPL 2004, pp. 281–
292. ACM Press, New York (2004)

13. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL
2003, pp. 224–235. ACM Press, New York (2003)

14. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic
data types. In: POPL 2006, pp. 232–244. ACM Press, New York (2006)

15. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: ICFP 2006, pp. 50–61. ACM Press, New York
(2006)

16. Sulzmann, M., Voicu, R.: Language-based program verification via expressive
types. Electronic Notes in Theoretical Computer Science 174(7), 129–147 (2007)

17. Kiselyov, O., Shan, C.c.: Lightweight static capabilities. Electronic Notes in The-
oretical Computer Science 174(7), 79–104 (2007)

18. Pierce, B.C., Turner, D.N.: Local type inference. In: POPL 1998, pp. 252–265.
ACM Press, New York (1998)

19. Flanagan, C.: Hybrid type checking. In: POPL 2006, pp. 245–256. ACM Press,
New York (2006)

20. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

21. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL 2006, pp. 42–54. ACM Press, New York (2006)

22. Chlipala, A.: Modular development of certified program verifiers with a proof as-
sistant. In: ICFP 2006, pp. 160–171. ACM Press, New York (2006)

23. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter.
Manuscript (April, 2005)

24. Augustsson, L.: Cayenne – a language with dependent types. In: ICFP 1998: Pro-
ceedings of the third ACM SIGPLAN international conference on Functional pro-
gramming, pp. 239–250. ACM Press, New York (1998)

25. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

26. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL
2002, pp. 191–202. ACM Press, New York (2002)

27. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70. ACM Press, New York (2002)

28. Suzuki, N., Ishihata, K.: Implementation of an array bound checker. In: POPL
1977, pp. 132–143. ACM Press, New York (1977)

29. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

30. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004)

31. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI 2007, pp. 300–309. ACM Press, New York (2007)

http://web.yl.is.s.u-tokyo.ac.jp/~uhiro/

Proving Properties about Lists Using Containers

Rawle Prince1, Neil Ghani1, and Conor McBride2

1 School of Computer Science,
Jubilee Campus,

University of Nottingham,
Nottingham, NG8 1BB,

England
{rcp,nxg}@cs.nott.ac.uk

2 Alta Systems (Northern Ireland) Ltd.,
Unit A, 2 Derryvolgie Avenue,

Belfast, BT9 6FL,
Northern Ireland

conor@strictlypositive.org

Abstract. Bundy and Richardson [7] presented a technique for reasoning about
lists using ellipsis (the dots in 1 + 2 + . . . + 10), where a polymorphic function,
denoted by �, is used to encapsulate recursive definitions of list functions and a
portrayal system using ellipsis gives an informal proof. We highlight certain lim-
itations of this technique and address these limitations using the recently devel-
oped theory of containers which capture the idea that many important datatypes
consist of templates where data is stored. We implement our ideas in Coq and
demonstrate how they can be used to prove theorems that eluded Bundy and
Richardson in [7].

1 Introduction

Foremost among the characteristics of inductive datatypes is the relationship between
definitions by recursion and proofs by induction. This relationship is rather intimate, as
we define a function by recursion then prove properties of the function by induction.
However, some inductive proofs turn out to be more difficult than first anticipated. For
example, consider the function rev : List(τ) → List(τ), where

rev([]) �→ [] (1)

rev(x :: xs) �→ rev(xs)++[x].

If we want to prove the property

∀l : List(τ).rev(rev(l)) = l, (2)

we may proceed by induction on l but get stuck at:

rev(rev(x :: xs)) = rev(rev(xs)++ [x]).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 97–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 R. Prince, N. Ghani, and C. McBride

At this point we may introduce an intermediate lemma to make further progress; in this
case, a distributive lemma of reverse over append:

∀ x y : List(τ),rev(x ++ y) = rev(y)++ rev(x),

then the proof can be completed.
Sometimes the lemmas required to complete a proof are not so easily deducible,

and such lemmas need to be conjectured and proved. This is an instance of the search
control problems raised by inductive theorem proving [4], which have been well stud-
ied: specialised heuristics exist for addressing these problems (for instance recursion
analysis and rippling [5]), but none is complete.

In [7] Bundy and Richardson explored a novel way of proving properties of lists
by giving a formal basis for proofs using ellipsis. At the core of their technique is the
representation of List(τ) as pairs (n, f : IN → τ), via a polymorphic function

� : IN× (IN → τ) → List(τ),

where n : IN represents the length of the list, and f (i) is the element stored at the ith

position in the list, i.e. �(n, f) = [f (1), . . . , f (n)]. Notice on the right of the equation
we have an informal representation of a list using ellipsis, while on the left we have a
formal representation of it. Similarly, reverse can be represented informally as mapping
the list [f (1), . . . , f (n)] to [f (n), . . . , f (1)] or formally as mapping �(n, f) to the list
�(n,λ i. f (n − i− 1)). We call this the ellipis technique.

The advantage of the ellipsis technique is that once can reason formally with expres-
sions involving � and then obtain a clear, concise, correct and informal proof using
ellipsis. As was demonstrated in [7], there are a number of proofs for which an induc-
tive approach flounders, but which can be straightforwardly established using the ellipis
technique.

Apart from addressing the limitations of inductive inference, the ellipsis technique
also endorses definitions and proofs which, by using ellipis, are intuitive and concise.
Such schematic definitions and proofs are usually thought to be easier to understand
than their regular counterparts (see [6]). The success of this technique was reasonable:
50% of properties tested were proved [7].

This success, however, could not be repeated for properties of append ++ : List(τ)×
List(τ) → List(τ), where

[]++ys �→ ys (3)

(x :: xs)++ ys �→ x :: (xs++ ys).

More fundamentally, lists cannot be uniquely represented with the ellipsis technique:
the domain of the function f in (n, f : N → τ) is too large and, consequently, � is
not injective. Further, there is no explanation as to which programs can be represented
in this way and which cannot. Additionally, the ellipsis technique does not generalise
to other datatypes, including nested lists. This limitation was recognized in [7] and
properties of the function flatten : List(List(τ)) → List(τ), where

flatten([]) �→ [] (4)

flatten(x :: xs) �→ x ++flatten(xs)

were not considered.

Proving Properties about Lists Using Containers 99

The theory of containers [2,1] admits a refinement of the theory of ellipsis, which
solves all of the problems mentioned above. Containers capture the idea that concrete
datatypes consists of memory locations where data can be stored. For example, an el-
ement of the type List(τ) can be uniquely written as a natural number n — its shape,
given by its length — and a function f : {0, . . . ,n − 1} → τ , which labels each position
in the list with some data. This guarantees a unique representation, as the domain of
f is now correct. Further, containers not only model lists, but also all strictly positive
datatypes. 1 Additionally, all polymorphic functions between strictly positive types can
be captured as container morphisms [2,1]. Containers thus seem to be an ideal founda-
tion for reasoning about such datatypes.

This paper explores containers as a basis for reasoning about lists. We show how
containers subsume the ellipsis technique and demonstrate how we can reason with
containers. We then discuss our formalisation and compare our results to [7].

In summary, this paper makes the following contributions:

1. We introduce containers to the theorem proving community and show that con-
tainers subsume the ellipsis technique. Consequently, we present containers as an
alternative representation from which schematic proofs can be derived.

2. We extend the work in [7] to show how containers can be used to reason about
lists. In particular, we demonstrate how some properties which eluded Bundy and
Richardson can be resolved via containers.

3. We present an implementation of the core theory of containers in Coq, as well as
a formalisation of lists as container types. We also discuss a number of challenges
that arose during this implementation and how we address them.

The example theorems in this paper all have well-known inductive proofs, straigh-
forward to execute once the appropriate generalizations have been made. Our purpose
in this paper, like that of Bundy and Richardson, is to capture these properties more
systematically and schematically, reducing carefully crafted inductions to essentially
unremarkable arithmetic facts.

Section 2 gives a brief introduction to containers and details the constructions and
results required in our system. In section 3 we describe key aspects of such a reasoning
system and demonstrate how proofs are resolved. Section 4 discusses issues raised in
the implementation, while the sections following offer some discussions and comments
on related work and possible future work.

In what follows, we provide the Coq definitions and lemmas so one can relate the
article to the formalisation.2

2 Introduction to Containers

Containers capture the idea that concrete datatypes consists of memory locations where
data can be stored. For instance, any element of type List(τ) can be uniquely writ-
ten as a natural number n given by the length of the list, together with a function

1 Strictly positive types are those formed using 0, 1, +, ×, →, μ, ν with the restriction that types
on the left side of the arrow are closed with respect to types variables [8]. For instance, in initial
algebra semantics, list(X) = μY.1+X ×Y so the type list is a strictly posistive type.

2 The formal development is available on the web at http://www.cs.nott.ac.uk/∼rcp/work.html.

100 R. Prince, N. Ghani, and C. McBride

{0, . . . ,n − 1} → τ which labels each position within the list with an element from
τ . Thus we may write:

List (τ) � ∑n : N .Fin n → τ.

Fin n can be thought of as the type containing n memory locations, while the function
f : Fin n → τ attaches to these locations the data stored there. We call n : N the shape
of the list and Fin n the type of positions in a list with shape n. Similarly, any binary
tree tree can be described by its underlying shape which is obtained by deleting the data
stored at the leaves and a function mapping the positions in this shape to the data, thus:

•
��

��
� ��
�

•
��

� ��
� �������	x3

�������	x1 �������	x2

∼=

•
��

��
� ��
��

•
��

�� ��
��
��
����

��
����
��
���� x1
x2

x3
��������

X

� ��� ��
� ��

.

In general, we can consider datatypes which are given by a type of shapes S and, for
each s : S, a type of positions Ps which we may think of as locations in memory where
data can be stored.

Definition 2.1. Container. A container (S � P) consists of a type S and, for each shape
s : S, a type of positions P s.

Notice that the type P is a dependent type. We may equivalently write (S � P) in point-
wise notation (s : S�P(s)), especially if we need to be explicit about the patterns which
shapes can match.

Coq’s record type provides a shorthand notation for an inductive type with one con-
structor: every field in a record type can depend on values in the preceding field and
field names can act as projection functions. We thus define a container in Coq as:

Record Fam (X:Type) : Type := ucont {s:Set; p: s -> X}.
Definition Ucontainer : Type := Fam Set.

As suggested above, lists can be presented as the container (IN� Fin). In Coq, we can
leave the shape set to be inferred:

Definition Lst := ucont Fin.

where nat and Fin — the set {0, . . . ,n − 1} — are as follows,

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Inductive Fin : nat -> Set :=
|fz : forall n, Fin (S n)
|fs : forall n, Fin n -> Fin (S n).

The datatype represented by a container has as values, a shape and a function as-
signing to each position of that shape, a piece of data. This is called the extension of a
container.

Proving Properties about Lists Using Containers 101

Definition 2.2. Extension of a Container. Let (S � P) be a container. Its extension is
the functor T(S�P) : Set → Set defined by:

T(S�P)τ � ∑s : S.P(s) → τ,

which we formalise as:

Record Ext (S:Ucontainer)(X:Set):Set :=
uext {u: s S; f: p S u -> X }.

An element of T(S�P)τ is thusa pair (u, f) where u : S is the shape and f : Ps → τ labels
positions over s with elements from τ .

2.1 Container Morphisms

Consider reverse on a list (n, f). Assume that rev(n, f) = (n′, f ′). Since rev does not
change the shape of the list, n = n′. For the positions, we observe that the data stored at
the ith position of the output is the data stored at the (n− i−1)th position from the input.
More generally, a polymorphic function between containers consists of a covariant map
between shapes and a contravariant mapping between positions.

Definition 2.3. Container Morphism. Given (S � P) and (S′ � P′), the morphism (S �
P) → (S′ � P′) consists of a pair (u, f), where u : S → S′ and f : ∏s : S. P′ (u s) →
Ps.∏s : S.P′ (u s) → Ps.

We formalise this as:

Record cmr (C D:Container):Type :=
ucmr {u: s C -> s D;

f: forall a: s C, p D (u a) -> p C a}.

Example 2.4. idm : (S � P) → (S � P) is the identity morphism which is defined by
(λ s.s, λ s.λ p. p).

Example 2.5. crev : (n : N�Finn) → (n : N�Finn) is the representation of reverse ((1)
on p.97) as a container morphism. It is given by the identity on shapes and the map rv
on positions: in effect, rvn(i) = n − i− 1. We define it as follows:

rv : ∀n.Finn → Finn
rv(S n) f z �→ topn
rv(S n) (f s i) �→ emb (rvn i),

(5)

where topn returns the largest element of Finn (corresponding to n − 1), and embn

embeds the elements of Finn into Fin(S n) preserving their numerical value.

top : ∀n.Fin(S n)
topO �→ f z
top(S n) �→ f s (topn)

emb : ∀n.Finn → Fin(S n)
emb f zn �→ f z(Sn)
emb (f s i) �→ f s (emb i)

(6)

Observe that top and emb partition Fin(S n):

∀i : Fin(S n). i = topn ∨ ∃ i′ : Finn. i = embi′. (7)

102 R. Prince, N. Ghani, and C. McBride

We formalise crev as :

Definition crev : cmr Lst Lst :=
ucmr (id (s Lst)) (fun n: s Lst => fun fn: Fin n => rv fn).

The contravariance of the function on position may seem surprising. But it can be intu-
itively understood by considering that we can always show where a datum in the output
comes from but not where a datum from the input goes to, since it may be copied or
disappear.

Example 2.6. The tail function is given by the container morphism

(u, f) : (IN� Fin) → (1 + IN� {inl(∗) �→ 0 | inr(n) �→ Finn})

defined by
u(0) = inl(∗) u(1 + n) = inr(n)

and with f0 =! and fn+1 : Finn → Fin(n + 1) defined by fn+1i = 1 + i This can be
visualised as

�������	x0 �������	x1 �������	x2 �→ �������	x1 �������	x2��� ���

2.2 Constructions on Containers

Containers are closed under various type forming operations such as sums, products,
constants, fixed exponentiation, (nested) least fixed point, and (nested) greatest fised
points [2,1]. Thus they encapsulate a large number of types. In what follows, we
detail the constructions which are pertinent to this presentation: products, sums and
compositions.

Definition 2.7. Products. (S � P)× (S′ � P′) is the container (A � B), where A = S × S′

and for each s : S and s′ : S′, B : S × S′ → Set is defined as B(s,s′) = Ps + P′ s′.

Definition cont_prod (C D: Ucontainer) :=
ucont (fun q : (s C) * (s D) =>
sum (p C (fst q)) (p D (snd q))).

For the sum (S � P)+ (S′ � P′), the shapes are given by S + S′. For the positions: if our
shape is of the form inl(s) then it is given by Ps and, alternatively, if it is of the form
inr(s′) then it is given by P′ s′.

Definition 2.8. Sums. (S �P)+(S′ �P′) is the container (A�B), where A = S +S′ and
for s : S and s′ : S′, B (inl(s)) = Ps and B (inr(s′)) = P′ s′.

In Coq syntax we write;

Definition sum (f : S1 -> Set)
(g : S2 -> Set) (H: S1 + S2):=

match H with
| inl a => f a
| inr b => g b
end.

Definition cont_sum (C D: Ucontainer) := ucont (sum (p C) (p D)).

Proving Properties about Lists Using Containers 103

When we come to reason about List(List(τ)), we will need to represent this datatype
as a container. The principled way to do this is to observe that List(List(τ)) is the
composite (List ◦ List)τ; this composition of functors can be reflected via composition
of containers.

Definition 2.9. Composing Containers. Let (S�P) and (S′�P′) be containers, the com-
position (S � P)◦ (S′ � P′) is the container

(
(s, f) : T(S�P)S

′ � ∑ i : Ps.P′(f i)
)
.

We formalise this as:

Record CPos (C D : Ucontainer) (a : Ext C (s D)) : Set :=
cpos {cs : p C (u a); cp : p D ((f a) cs)}.

Definition cComp (C D : Ucontainer) : Ucontainer :=
ucont (fun a : Ext C (s D) => CPos D a).

The shape of the composition must determine the outer shape together with the inner
shape for each outer position. We can therefore take it to be a (S � P) structure holding
S′ elements. A composite position first locates an inner (S′ � P′) structure at an outer
position, then an individual element within it.

Example 2.10. Nested lists List(List X) can be represented by the composite of the
container (IN� Fin) with itself. It’s shape is given by

List (IN) = T(IN�Fin)IN � Σn : IN.Fin n → IN,

and it’s positions by P : List (IN) → Set which is defined by

P (n, f) = Σ i : Finn.Fin(f i).

In general, all constructions on containers extend to container morphisms. Addition-
ally, we can represent the composition of functions by constructing the composite of
container morphisms.

Definition 2.11. Composing Container Morphisms. If (u1, f1) : (S�P) → (S′ �P′) and
(u2, f2) : (S′ � P′) → (S′′ � P′′) are container morphisms, their composite is the con-
tainer morphism (u, f) : (S � P) → (S′′ � P′′) defined by u s = us ◦ (u1 s) and f s p =
f1 s (f2 (u1 s) p).

This is implemented as:

Definition m_comp (cd : cmr C D) (de : cmr D E) : cmr C E:=
match cd with
| ucmr v0 g0 =>
match de with
| ucmr v1 g1 =>

ucmr (comp v0 v1)
(fun (sc : s C) (pe : p E (comp v0 v1 sc)) =>

comp (g1 (v0 sc)) (g0 sc) pe)
end

end.

104 R. Prince, N. Ghani, and C. McBride

3 Reasoning with Containers

Given a container morphism (u, f) : (S�P) → (S′ �P′), does (u, f) really define a poly-
morphic function T(S�P) → T(S′�P′)? If so, are all polymorphic function uniquely defined
in this manner? The central result in the theory of containers addresses these questions.

Theorem 3.1. The functor T : CI → [CI ,C] is full and faithful.

In other words, container morphisms (S � P) → (S � P) are in bijection with natural
transformations T(S�P) → T(S′�P′). For a proof, the interested reader may consult [2,1,8].
This addresses the flaw in [7] as it ensures us that by reasoning about container mor-
phisms, we reason about polymorphic functions. In particular, we can prove two poly-
morphic functions are equal (i.e. have the same computational result) by proving that
their representations as container morphisms are equal - i.e. both their maps on shapes
and positions have the same computational result. Further, we ensure we reason about
lists by giving a natural isomorphism from lists to extensions: T(IN�Fin)τ � List(τ).
So by reasoning about container morphisms, we reason about lists and vice versa. Our
approach can be visualized as shown:

List(τ) → List(τ)

��
T(IN�Fin)τ → T(IN�Fin)τ

��

��

(IN� Fin) → (IN� Fin)

��

3.1 Equality of Container Morphisms

Given two container morphisms (u, f), (u′, f ′) : (S�P) → (S′ �P′), we want to consider
when their action on shapes and positions correspond. Recall that container morphisms
(S � P) → (S′ � P′) are dependent pairs: they inhabit the type

∑α : S → S′. ∏s : S.P′(α s) → P s.

To state their equality, we need to cope with two issues: heterogeneity and extension-
ality. The first of these arises when we try to consider the components of container
morphisms separately. Their types are as follows:

u,u′ : S → S′

f : ∏s : S.P′ (u s) → Ps
f ′ : ∏s : S.P′ (u′ s) → Ps

The conventional Martin-Löf definition of equality within a given type allows us to ex-
press that u = u′, but prevents us from asserting that f = f ′ because their types are con-
sidered distinct. Such heterogeneous equations occur naturally whenever not only our

Proving Properties about Lists Using Containers 105

propositions but even our data structures are expressed as dependent types. In [10,11],
McBride proposed a convenient way to treat them: the ‘John Major’ equality predi-
cate, written as = jm, admits comparison of objects of any type, but they can be only
treated as equal (i.e. substituted) if they are of the same type. If we can identify u with
u′ by substitution, say, then the types of f and f ′ become the same and the resulting
homogeneous equation can be exploited.

The formation, introduction and elimination rules, respectively are as follows:

a : A b : B
a = jm b : Prop

a : A
refl : a = jm a

a : A
Φ : ∀a′ : A.a = jm a′ → Type
φ : Φ a (refl a)
∀a′ : A.∀q : a = jm a′.Φ a′ q

Thus = jm can compare anything to a, even if its type is different from A. However,
the introduction and elimination rules follow the conventional homogeneous definition:
only objects of the same type can really be equal or treated as such.

The second issue is that types such as u = u′ are only inhabited if u and u′ have the
same implementation, but we need to consider functions extensionally. We therefore
define equality for container morphisms such that each component takes equal inputs
to equal outputs. Since the position components are dependent functions, = jm again
provides the flexibility required:

Definition 3.2. Equality of Container Morphisms. Let (u, f), (u′, f ′) : (S � P) → (S′ �
P′).

∀s : S.us = u′ s
∀s : S.∀p : P(us).∀p′ : P(u′ s). p = jm p′ → f s p = jm f ′ s p′

(u, f) =mor (u′, f ′)

The = jm relation is predefined in the Coq library and we use it in our formalisation:

Inductive Eqmor (i j : cmr C D) : Prop :=
morq : (forall a : s C, u i a = u j a)->

(forall (a : s C)(p0 : p D (u i a))(p1 : p D (u j a)),
JMeq p0 p1 -> f i a p0 = f j a p1) -> Eqmor i j.

As suggested before, if (u, f), (u′, f ′) : (IN�Fin)→ (IN�Fin), then proving (u, f) =mor

(u′, f ′) reduces to arithmetical proofs about IN and Finn. Now, armed with theorem 3.1
and the elimination rule given by definition 3.2, we can safely proceed to give container
based proofs of list-theoretic results. For instance, we may specify (2) on p.97 as:

Theorem crev_crev_sm : Eqmor (m_comp crev crev) (idm Lst).

Unpacking the definitions, our proofs obligations are to show:

1. ∀n : IN.n = n for shapes and,
2. ∀n : IN.∀i : Finn. rv(rv i) = i for positions—in effect, n − (n − i− 1) − 1

The latter requires a proof that reversing the finite type Finn is also self inverse.

106 R. Prince, N. Ghani, and C. McBride

In this way, properties of list manipulators are transformed into arithmetic asser-
tions. Ultimately, these too require inductive proofs, but it seems reasonable to hope
that container-based reasoning might benefit from tactics and libraries designed to sup-
port arithmetic.

4 Analysing Finite Types

If we are to define and reason about our container morphisms for list manipulation,
we will need some tools for working with the Fin family. Here, we can borrow some
useful techniques from programming in Epigram [12,3], in particular the use of views—
alternative methods of data decomposition, presented via inductive relations.

4.1 Appending Lists

Let us define (3) on p.98 as a container morphism:

cappend : ((n,m) : IN× IN� Finn + Finm)→ (IN� Fin)

The length of the output should be the sum of the lengths of the inputs, so it is clear
what to do for shapes:

u : IN× IN → IN
ucappend (n,m) �→ n + m.

Now we need to map output positions in Fin(n+m) to input positions in Finn+Finm,
reflecting the sum structure of finite types. It’s easy to build injections which map the
other way. In our formalisation, we write

Fixpoint finl (n m : nat) (i : Fin n) {struct i} : Fin (n + m):=
match i in Fin n return Fin (n + m) with
| fz _ => fz
| fs x k => fs (finl x m k)
end.

Fixpoint finr (n m : nat) (i:Fin m) {struct n}: Fin (n + m):=
match n return Fin (n + m) with
| O => i
| S n’ => fs (finr n’ m i)
end.

If we knew that finl and finr covered Fin(n + m), we could write

fcappend : ∀(n,m) : IN.Fin(n + m) → Finn + Finm
fcappend ((n,m),finlnmi) �→ inl i
fcappend ((n,m),finr nm j) �→ inr j

Correspondingly, we may define a relation which expresses what it means to be
covered by finl and finr, then show that this relation always holds:

Proving Properties about Lists Using Containers 107

Inductive FinSum (n m : nat) : Fin (n + m) -> Set :=
| is_inl : forall i: Fin n, FinSum (finl n m i)
| is_inr : forall j: Fin m, FinSum (finr n m j).

Definition finSum (n m: nat) (k : Fin (n + m)): FinSum n m k.

The definition of finSum is straightforward. Case analysis on the output of finSumnmk
will deliver exactly the decomposition of k as finlnmi or finr nm j required to give
fcappend as specified above. The very same view is exactly what we need in order to
reason about cappend.

4.2 Flattening Lists of Lists

Where (3) concatenates two lists, flatten (see (4) on p.98) takes a list of lists, represented
by a container composition

cflatt : (((n, l) : T(IN�Fin)IN)� Σ i : Finn.Fin (l i)) → (IN� Fin).

For shapes, we must add the lengths of all n input lists, each given by the l function:

ucflatt : T(IN�Fin)IN → IN
ucflatt (0, l) �→ 0
ucflatt (S n, l) �→ l f z + ucflatt (n, l ◦ f s).

That is, ucflatt (n, l) = ∑i:Finn l i. Correspondingly, we need a map on positions which
reflects the summation structure of finite types:

fcflatt : ∀(n, l) : T(IN�Fin)IN.Fin(∑
i:Finn

l i) → Σ i : Finn.Fin (l i).

Again, the ‘wrong’ direction is easy. We may readily construct the general injection
using finl and finr, as follows:

Definition finj (n : nat) (l : Fin n -> nat) (i : Fin n) :
Fin (l i) -> Fin (sum_n l).

intros n l i k; induction i.
exact (finl (l (fz n))

(sum_n (fun z : Fin n => l (fs z))) k).
exact (finr (l (fz n))

(sum_n (fun z => l (fs z))) (IHi (fun z => l (fs z)) k)).
Defined.

From here, we may once again present the direction we need as a view:

Inductive FinSumm (n : nat) (l : Fin n -> nat) :
Fin (sum_n l)-> Set :=

finPair : forall (i: Fin n) (k : Fin (l i)),
FinSumm l (finj l i k).

Definition finSumm (n:nat) (l: Fin n -> nat)
(x : Fin (sum_n l)) : FinSumm l x.

108 R. Prince, N. Ghani, and C. McBride

4.3 Reasoning about Reverse

Views also play an important part in our reasoning toolkit. An interesting example is
the theorem

∀l : List(List(τ)). rev(flatten(l)) = flatten(map(rev,rev(l))), (8)

where rev is given by (1) on p.97. This is specified in our container formalisation as

Theorem map_flatt_rev: Eqmor
(m_comp cflatt crev)
(m_comp (m_comp (ap_mor crev Lst) map_rev) cflatt),

where map rev is the (map rev) in (8), and is given as a container morphism

(IN� Fin)◦ (IN� Fin) → (IN� Fin)◦ (IN� Fin)

Definition map_rev :=
let pmap :=
(fun a : Ext Lst nat => fun ps : CPos Lst a =>
cpos Lst a (cs ps) (rv (cp ps))) in
ucmr (cComp Lst Lst)(cComp Lst Lst)(id (Ext Lst nat)) pmap,

and (ap mor crev Lst) is the container morphism which represents the function

revList : List(List(τ)) → List(List(τ))

which reverses its input. Following on from the discussion in section (2.1) on p.101; for
the map on shapes, we need to show that

ucflatt (n, f) = ucflatt (n,(fcrev n)), (9)

and for the map on positions

p1 : Fin(ucflatt (n, f))
p2 : Fin(ucflatt (n,(fcrev n)))
H : p1 = jm p2

fcflatt (ucflatt (n, f)) p1 = fcflatt (ucflatt (n,(fcrev n))) p2
. (10)

Proving (9) is trivial. We observe that that fcrev, fcappend and fcflatt define different op-
erations on the type Finn . So in order to prove (10), we will need to analyze Finn
according to these operations.

Firstly, any element of type Fin(S n) can be given either as the maximum element
topn or for some i : Finn, as the embedding embi (c. f . (7) on p.101). This suggests the
need for a view on Fin(S n) so we can analyze it in terms of these constructions. We
formalise this as:

Inductive FinEmtp (n : nat) : Fin (S n) -> Set :=
| isTp : FinEmtp (tp n)
| isEmb : forall (i : Fin n), FinEmtp (emb i).

Definition finEmtp (n : nat) (i : Fin (S n)) : FinEmtp i.

where f inEmt p gives the required view.

Proving Properties about Lists Using Containers 109

The need for each of these views is suggested by the position maps of cappend, cflatt
and crev respectively: when reasoning about crev we may require a view on Fin(S n) in
terms of top and emb; when reasoning about about cappend, we may require the view
on Fin(n + m) in terms of Finn and Finm and when reasoning about cflatt, we may
require the view on Fin (∑i:Finn(l i)). In the case of (10), these views are necessary.

4.4 Simultaneous Rewriting

Completing the proof of (10) requires another piece of machinery. In our construction
of equality for container morphisms (Definition 3.2 on p.105), = jm was required to
compare objects which are provably equal. Often in our proofs, it necessary to substitute
objects of a dependent type that are (heterogeneously) equal, given that we have a proof
about the (homogeneous) equality of the objects on which they depend. To do this we
may derive an additional substitution rule for = jm:

a a′ : A
B : A → Type
ba : B a ba′ : B a′

H : a = a′ Hjm : ba = jm ba′

Φ : ∀(x : A) (bx : B x).Type

Φ a ba
Φ a′ ba′ (11)

For example, consider proving the following:

∀(nmx : IN),∀i : Finx. f inr n (m+ x) (finr m x i) = jm finr (n + m) x i.

Assuming + is defined by recursion on its first argument, we can proceed by induction
on n but get stuck at:3

finr n (m+ x) (finr m x i) = jm finr (n + m) x i
f s(finr n (m+ x) (finr m x i)) = jm f s(finr (n + m) x i) .

But this can be unstuck by (11) and a proof of the associativity of +, and the proof
completed.

5 Discussion

For reasons already discussed, we were only interested in properties of polymorphic
functions. However, in their formalisation of the ellipsis technique, Bundy and Richard-
son in [7] also sought to consider functions which are not polymorphic. For instance,
the function member : τ × List (τ) → Bool was considered as member(x, �(n, f)) ↔
∃i ≤ n. x = (f i). All attempts to prove properties of this function failed. Although, we

3 The elimination rule for = jm resolves the base case (see section 3.1).

110 R. Prince, N. Ghani, and C. McBride

can give a representation of member via containers, it cannot be expressed as a con-
tainer morphism. Our current approach is to exploit Theorem 3.1 and reason in terms
of container morphisms; so functions like member could not be considered since it is
not polymorphic.

We indicated earlier that the ellipsis technique stumbled while proving properties
involving ++. In [7] ++ was represented as:

�(n f) ++ �(m, g) = �(n + m, comb(n, f , g))

where comb is defined by:

comb(n, f , g)(i) =
{

f i if i ≤ m
g(i− m) if i > m

Proving properties involving ++ thus became very difficult, as it involved reasoning
about inequalities and performing conditional rewriting. An ellipsis technique was im-
plemented in [14] which addressed these issues, but the limitations mentioned in section
1 still remained.

When the work in [7] was completed, the theory of containers was not yet devel-
oped, nor had most of the the techniques we use to represent and reason about container
morphisms (e.g. views). It therefore seems that the limitations of the ellipsis technique
were primarily due to the existing state of the art. We believe that containers represent
a fundamental improvement of the elipsis technique, where the use of dependent types
ensures that the representation of lists is unique and, hence, many probems encoun-
tered with the latter did not arise. For instance, the use of views makes reasoning about
functions like ++ much easier than was the case even in [14].

Our container approach has proved significantly more effective than the ellipsis
technique at systematically capturing the inductions underlying properties of list-
manipulating functions: below, we show a selection of well-known theorems amenable
to the former but not the latter:

flatten(a ++b) = flatten(a)++flatten(b)
rev(rev a) = a

rev(a ++b) = rev(b)++ rev(a)
rev(flatten(a)) = flatten(map(rev,rev(a)))

(a ++b)++c = a ++(b ++c).

6 Related Work

Despite well known limitations of inductive inference (cf. section (1) on p.97), the the-
orem proving community does not seem to have shown much interest in alternative ap-
proaches to reasoning about lists and recursive types in general. The ellipsis technique
in [7], thus seem to be an isolated exception.

As far as we are aware, ours is the first attempt at developing a container-based
reasoning system. We did suggest, however, that our approach can be adopted as a

Proving Properties about Lists Using Containers 111

means of formalising ellipsis, as was the case in [7], as well as a means from which
schematic proofs [6] (of properties of polymorphic functions between strictly positive
datatypes) can be extracted.

We have detailed the limitations of the ellipsis technique, and addressed them earlier
in the discourse. We have also shown that our container approach is successful in cases
where the ellipsis technique failed.

7 Conclusion and Future Work

In this paper, we have investigated containers. We have seen how to represent lists as
containers and how we can reason about polymorphic functions in terms of container
morphisms. We have also seen that this representation of list not only refines the ellipsis
technique, but also instructs a robust reasoning system.

The central difficulty which we faced in this work was to convince Coq of essen-
tially unremarkable facts about arithmetic on Fin, arising from the representation of
container morphisms over (IN� Fin). Neither the libraries nor the tactics of Coq are as
well adapted to this presentation of arithmetic problems as they are to ranges expressed
via order relations. However, it is clear from the success of tactics like Omega, [15,9]
that this difficulty can be overcome. Our container approach directly captures the visual
intuition behind these properties of operations on lists, factoring their inductive proofs
into a schematic argument with arithmetic details. With suitable technology for the lat-
ter, these tasks will finally become as easy as our intuition suggests they should be.

Now that we know how to reason with containers, one consideration is to explore
reasoning about other datatypes. However, we would also like to consider our proof
method in more general context. Containers have been considered as an alternative ap-
proach to generic programming [3,13]; we wish to explore this application, and the
associated proof techniques. In particular, a wide variety of common first-order induc-
tive datatypes can be expressed as small containers, whose shapes have a decidable
equality and whose position sets are finite, making them particularly amenable to the
techniques in this paper.

Acknowledgment

We thank Peter Hancock and Nicolas Oury for helpful discussions on the topic. Special
thanks to Russell O’Connor for developing a library on finite types, available on the
Coq Wiki (http://cocorico.cs.ru.nl/coqwiki), which we found quite useful. Finally, our
grateful thanks to those anonymous referees for their useful comments and suggestions
for improving this paper.

References

1. Abbott, M.: Categories of Containers. PhD thesis, University of Leicester (2003)
2. Abbott, M., Altenkirch, T., Ghani, N.: Categories of Containers. In: Gordon, A.D. (ed.)

FOSSACS 2003. LNCS, vol. 2620, pp. 23–38. Springer, Heidelberg (2003)

112 R. Prince, N. Ghani, and C. McBride

3. Altenkirch, T., McBride, C., Morris, P.: Generic Programming with Dependent Types. In:
Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp.
209–257. Springer, Heidelberg (2007)

4. Bundy, A.: The automation of proof by mathematical induction. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 13, pp. 845–911. Elsevier, Amster-
dam (2001)

5. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for Mathe-
matical Reasoning. Cambridge Tracts in Theoretical Computer Science, vol. 56. Cambridge
University Press, Cambridge (2005)

6. Bundy, A., Jamnik, M., Fugard, A.: What is a proof? In: Philosophical Transactions of The
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 363, pp. 2377–2392
(2005)

7. Bundy, A., Richardson, J.: Proofs about lists using ellipsis. In: Logic Programming and Au-
tomated Reasoning (1999)

8. Ghani, N., Abbott, M., Altenkirch, T.: Containers - constructing strictly positive types. The-
oretical Computer Science 341(1), 3–27 (2005)

9. INRIA. The Coq Proof Asistant Reference Manual Version 8.1 (2006),
http://coq.inria.fr/V8.1pl3/refman/index.html

10. McBride, C.: Dependently Typed Functional Programs and their Proofs. PhD thesis, Univer-
sity of Edinburgh (1999)

11. McBride, C.: Elimination with a motive. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R.
(eds.) TYPES 2000. LNCS, vol. 2277, pp. 197–216. Springer, Heidelberg (2002)

12. McBride, C., McKinna, J.: The view from the left. Journal of Functional Programming 14(1),
69–111 (2004)

13. Morris, P.: Constructing Universes for Generic Programming. PhD thesis, University of Not-
tingham (2007)

14. Prince, R.: An extension of the ellipsis technique. Master’s thesis, University of Edinburgh
(2005)

15. Pugh, W.: The Omega test: A fast and practical integer programming algorithm for depen-
dence analysis. In: Supercomputing 1991: Proceedings of the 1991 ACM/IEEE conference
on Supercomputing, pp. 4–13. ACM Press, New York (1991)

http://coq.inria.fr/V8.1pl3/refman/index.html

Termination of Narrowing

in Left-Linear Constructor Systems�

Germán Vidal

Technical University of Valencia, Spain
gvidal@dsic.upv.es

Abstract. Narrowing extends rewriting with logic capabilities by al-
lowing logic variables in terms and replacing matching with unification.
Narrowing has been widely used in different contexts, ranging from the-
orem proving to language design. Surprisingly, the termination of nar-
rowing has been mostly overlooked. In this paper, we present a new
approach for analyzing the termination of narrowing in left-linear con-
structor systems—a widely accepted class of systems—that allows us to
reuse existing methods in the literature on termination of rewriting.

1 Introduction

The narrowing principle [35] generalizes term rewriting by allowing logic vari-
ables in terms—as in logic programming—and by replacing pattern matching
with unification in order to (non-deterministically) reduce them. Unrestricted
narrowing (i.e., not following any particular strategy for selecting reducible ex-
pressions) may have a huge—often infinite—search space, mainly because one
can freely select any reducible expression and applicable rewrite rule at each
narrowing step. Narrowing, originally introduced as an E-unification mechanism
in equational theories, has been mostly used as the operational semantics of so
called functional logic programming languages [21]. Recent examples of such lan-
guages based on narrowing are Curry [15] and Toy [27]. Currently, narrowing is
regaining popularity in a number of other areas, like protocol verification [16,28],
model checking [17], partial evaluation [1,32], refining methods for proving the
termination of rewriting [8], type checking in the language Ωmega [34], etc.

Termination is a fundamental problem in term rewriting, as witnessed by
the extensive literature on the subject (see, e.g., [13] and references therein).
Surprisingly, the termination of narrowing has been mostly overlooked so far.
To the best of our knowledge, no software tool for proving the termination of
narrowing has ever been developed. Indeed, only a few approaches to this subject
can be found in the literature (see a detailed account in Sect. 6).

In this work, we introduce a new approach to analyze the termination of
narrowing by reusing existing results and tools for analyzing the termination of
rewriting. The key idea is to consider variables as data generators in the context
of rewriting. This means that one can analyze the termination of narrowing for
� This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grants TIN2005-09207-C03-02 and Acción Integrada HA2006-0008.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 113–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 G. Vidal

the term add(x, z), where add is a defined function, x is a logic variable, and z is
a constructor constant, by analyzing the termination of rewriting for all terms
of the form add(t, z), where t stands for an arbitrary—possibly infinite—term.
Intuitively speaking, we want t to take any possible value that could be computed
by narrowing for the logic variable x in any derivation issuing from add(x, z),
even if it goes on infinitely.

This relation between logic variables and (possibly infinite) terms has been
recently exploited in order to eliminate logic variables from functional logic com-
putations [6,12]. A similar idea is also used in the termination analysis for logic
programs of [33], where logic programs are transformed to rewrite systems and
logic variables are then replaced with infinite terms (see Sect. 6).

Since data generators are, by definition, nonterminating, we introduce the use
of argument filterings in Sect. 4 in order to filter away these data generators in
rewrite derivations. Essentially, we consider two alternative approaches:

– The first technique is based on the well-known dependency pair framework
[8,20] for proving the termination of rewriting. We will show that only some
slight modifications are required in order to be applicable in our setting.

– The second technique is based on the argument filtering transformation of
Kusakari et al. [26] and, given a TRS R, produces a new rewrite system R′ so
that the termination of rewriting in R′ implies the termination of narrowing
in R. Therefore, any method or termination tool for rewrite systems can be
applied to R′ in order to prove the termination of narrowing in R.

Section 5 presents a technique for inferring appropriate argument filterings and
reports on a prototype implementation of a termination tool, TNT, that follows
the second approach above. First, the user introduces a rewrite system and an
abstract call indicating the entry function to the program. The tool computes
an argument filtering from the abstract call and, then, transforms the input
system using this argument filtering. The termination of the transformed system
is currently checked by using the AProVE tool [19].

The main contributions of this work can be summarized as follows: i) we
introduce a sufficient and necessary condition for the termination of narrowing
in left-linear constructor systems, a widely accepted class of systems; ii) we
introduce two alternative approaches for analyzing the termination of narrowing
w.r.t. a given argument filtering; and iii) we present an automatic tool for proving
the termination of narrowing.

Finally, Sect. 6 includes a comparison to related work and Sect. 7 concludes.
More details and proofs of all technical results can be found in [36].

2 Preliminaries

We assume familiarity with basic concepts of term rewriting and narrowing. We
refer the reader to, e.g., [9] and [21] for further details.

Terms and Substitutions. A signature F is a set of function symbols. We
often write f/n ∈ F to denote that the arity of function f is n. Given a set

Termination of Narrowing in Left-Linear Constructor Systems 115

of variables V with F ∩ V = ∅, we denote the domain of terms by T (F , V).
We assume that F always contains at least one constant f/0. We use f, g, . . .
to denote functions and x, y, . . . to denote variables. A position p in a term t is
represented by a finite sequence of natural numbers, where ε denotes the root
position. Positions are used to address the nodes of a term viewed as a tree. The
root symbol of a term t is denoted by root(t). We let t|p denote the subterm of t
at position p and t[s]p the result of replacing the subterm t|p by the term s. Var(t)
denotes the set of variables appearing in t. A term t is ground if Var(t) = ∅. We
write T (F) as a shorthand for the set of ground terms T (F , ∅).

A substitution σ : V �→ T (F , V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x �= σ(x)} is its domain. The set of variables introduced
by a substitution σ is denoted by Ran(σ) = ∪x∈Dom(σ)Var(xσ). Substitutions are
extended to morphisms from T (F , V) to T (F , V) in the natural way. We denote
the application of a substitution σ to a term t by tσ (rather than σ(t)). The
identity substitution is denoted by id. A variable renaming is a substitution
that is a bijection on V . A substitution σ is more general than a substitution
θ, denoted by σ � θ, if there is a substitution δ such that δ ◦ σ = θ, where “◦”
denotes the composition of substitutions (i.e., σ ◦ θ(x) = xθσ). The restriction
θ |̀V of a substitution θ to a set of variables V is defined as follows: xθ |̀V = xθ if
x ∈ V and xθ |̀V = x otherwise. We say that θ = σ [V] if θ |̀V = σ |̀V .

A term t2 is an instance of a term t1 (or, equivalently, t1 is more general than
t2), in symbols t1 � t2, if there is a substitution σ with t2 = t1σ. Two terms
t1 and t2 are variants (or equal up to variable renaming) if t1 = t2ρ for some
variable renaming ρ. A unifier of two terms t1 and t2 is a substitution σ with
t1σ = t2σ; furthermore, σ is the most general unifier of t1 and t2, denoted by
mgu(t1, t2) if, for every other unifier θ of t1 and t2, we have that σ � θ.

TRSs and Rewriting. A set of rewrite rules l → r such that l is a nonvariable
term and r is a term whose variables appear in l is called a term rewriting system
(TRS for short); terms l and r are called the left-hand side and the right-hand
side of the rule, respectively. We restrict ourselves to finite signatures and TRSs.
Given a TRS R over a signature F , the defined symbols D are the root symbols
of the left-hand sides of the rules and the constructors are C = F \ D.

We use the notation F = D 	 C to point out that D are the defined function
symbols and C are the constructors of a signature F , with D ∩ C = ∅. The
domains T (C, V) and T (C) denote the sets of constructor terms and ground
constructor terms, respectively. A substitution σ is (ground) constructor, if xσ
is a (ground) constructor term for all x ∈ Dom(σ).

A TRS R is a constructor system if the left-hand sides of its rules have the form
f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C, V), for all i = 1, . . . , n.
A term t is linear if every variable of V occurs at most once in t. A TRS R is
left-linear if l is linear for every rule l → r ∈ R.

For a TRS R, we define the associated rewrite relation →R as follows: given
terms s, t ∈ T (F , V), we have s →R t iff there exists a position p in s, a rewrite
rule l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the rewrite

116 G. Vidal

step is often denoted by s →p,l→r t to make explicit the position and rule used
in this step. The instantiated left-hand side lσ is called a redex.

A term t is called irreducible or in normal form in a TRS R if there is no
term s with t →R s. A derivation is a (possibly empty) sequence of rewrite
steps. Given a binary relation →, we denote by →+ the transitive closure of →
and by →∗ its reflexive and transitive closure. Thus t →∗

R s means that t can
be reduced to s in R in zero or more steps; we also use t →n

R s to denote that t
can be reduced to s in exactly n rewrite steps.

Narrowing. The narrowing principle [35] mainly extends term rewriting by
replacing pattern matching with unification, so that terms containing logic vari-
ables can also be reduced by non-deterministically instantiating these variables.
Formally, given a TRS R and two terms s, t ∈ T (F , V), we have that s �R t is
a narrowing step iff there exist1

– a nonvariable position p of s,
– a variant R = (l → r) of a rule in R,
– a substitution σ = mgu(s|p, l) which is the most general unifier of s|p and l,

and t = (s[r]p)σ. We often write s �p,R,θ t (or simply s �θ t) to make explicit
the position, rule, and substitution of the narrowing step, where θ = σ |̀Var(s)
(i.e., we label the narrowing step only with the bindings for the narrowed term).
A narrowing derivation t0 �∗

σ tn denotes a sequence of narrowing steps t0 �σ1

. . . �σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id). Given a narrowing
derivation s �∗

σ t, we say that σ is a computed answer for s.

Example 1. Consider the following TRS R defining the addition add/2 on nat-
ural numbers built from z/0 and s/1:

add(z, y) → y (R1)
add(s(x), y) → s(add(x, y)) (R2)

Given the term add(x, s(z)), we have infinitely many narrowing derivations issu-
ing from add(x, s(z)), e.g.

add(x, s(z)) �ε,R1,{x �→z} s(z)
add(x, s(z)) �ε,R2,{x �→s(y1)} s(add(y1, s(z))) �1,R1,{y1 �→z} s(s(z))
. . .

with computed answers {x �→ z}, {x �→ s(z)}, etc.

3 Termination of Narrowing Via Termination of
Rewriting

We first introduce our notion of termination, which is parameterized by a given
binary relation:
1 We consider the so called most general narrowing, i.e., the mgu of the selected sub-

term and the left-hand side of a rule—rather than an ordinary unifier—is computed
at each narrowing step.

Termination of Narrowing in Left-Linear Constructor Systems 117

Definition 1 (termination). Let T be a set of terms. Given a binary relation
∝ on terms, we say that T is ∝-terminating iff there is no term t1 ∈ T such that
there exists an infinite sequence of the form t1 ∝ t2 ∝ t3 ∝ . . .

We say that a term t is ∝-terminating iff the set {t} is ∝-terminating.

The usual notion of termination can then be formulated as follows: a TRS is
terminating iff T (F) is →R-terminating. As for narrowing, we say that a TRS
R is terminating w.r.t. narrowing iff T (F , V) is �R-terminating.

In general, however, only rather trivial TRSs are terminating w.r.t. narrowing.
Consider, for instance, the following TRS R = {f(s(x), y) → f(x, y)}. Although
every term of the form f(t1, t2) has a finite rewrite derivation, we can easily find
a term, e.g., f(w, z), such that an infinite narrowing derivation exists:

f(w, z) �{w �→s(x1)} f(x1, z) �{x1 �→s(x2)} f(x2, z) �{x2 �→s(x3)} . . .

Therefore, we focus on the termination of narrowing w.r.t. a given set of terms,
which explains our formulation of termination in Def. 1 above.

The following result provides a first—sufficient but not necessary—condition
for the termination of narrowing in terms of the termination of rewriting.

Theorem 1. Let R be a TRS and T be a finite set of terms. Let T ∗ = {tσ |
t ∈ T and t �∗

σ s in R}. T is �R-terminating if T ∗ is finite (modulo variable
renaming) and →R-terminating.

The following example illustrates why the above condition is not necessary:

Example 2. Consider the following TRS: R = {f(a) → b, a → a}. Given the
set of terms T = {f(x)}, we have that T is �R-terminating since the only
narrowing derivation is f(x) �{x �→a} b. However, T ∗ = {f(a)} is finite but not
→R-terminating: f(a) → f(a) → . . .

Verifying the finiteness and →R-termination of T ∗ is generally, not only unde-
cidable, but also rather difficult to approximate since one should approximate all
possible narrowing derivations issuing from the terms in T . Therefore, we now
introduce an alternative—easier to check—condition.

Firstly, we restrict ourselves to a narrowing strategy over a class of TRSs in
which the terms introduced by instantiation cannot be narrowed (this will avoid,
e.g., the situation of Ex. 2). Many useful narrowing strategies fulfill this condi-
tion, e.g., basic [23] and innermost basic narrowing [22] over arbitrary TRSs, lazy
[29] and needed2 narrowing [5] over left-linear constructor TRSs, etc. Actually,
any narrowing strategy over left-linear constructor systems computes only con-
structor substitutions (a formal proof can be found in [36]).

Secondly, as mentioned in the introduction, we regard variables in narrowing
as generators of possibly infinite (constructor) terms from the point of view of

2 Although needed narrowing [5] does not compute mgu’s (basically, some bindings are
anticipated to ensure that all narrowing steps are needed), it computes constructor
substitutions (see [3, Lemma 11]) and, thus, our forthcoming results also apply.

118 G. Vidal

rewriting. For this purpose, we introduce a fixed fresh function symbol “gen”
which does not appear in the signature of any TRS. The following definition is
a simplified version of the original notion of a generator in [6]:

Definition 2 (data generator, gen). Let R be a TRS over a signature F =
D 	 C. We denote by Rgen a TRS over F 	 {gen} resulting from augmenting R
with the following set of rewrite rules:

{gen → c | c/0 ∈ C} ∪ {gen → c(
n times

︷ ︸︸ ︷
gen, . . . , gen) | c/n ∈ C, n > 0}

Example 3. For instance, for the TRS R of Ex. 1 with C = {z/0, s/1}, we have
Rgen = R ∪ {gen → z, gen → s(gen)}.

Trivially, the function gen can be (non-deterministically) reduced to any ground
constructor term. Variables are then replaced by generators in the obvious way:

Definition 3 (variable elimination, t̂, T̂). Given a term t ∈ T (F , V) over a
signature F , we let t̂ = tσ, with σ = {x �→ gen | x ∈ Var(t)}. Analogously, given
a set of terms T ⊆ T (F , V), we let T̂ = {t̂ | t ∈ T } ⊆ T (F 	 {gen}).

Note that t̂ is always ground for any given term t since all variables occurring
in t are replaced by function gen.

Now, we state the correctness of the variable elimination, an easy consequence
of the results in [6] (a complete proof can be found in [36]). Our first result shows
that every narrowing computation can be mimicked by a rewrite derivation if
logic variables are replaced with gen in the initial term:

Lemma 1 (completeness). Let R be a left-linear constructor TRS over a
signature F = D 	 C and s ∈ T (F , V) be a term. If s �p,R,σ t in R, then
ŝ →∗ ŝσ →p,R t̂ in Rgen.

Unfortunately, variable elimination is not generally sound because repeated vari-
ables are bound to the same value in a narrowing computation, while different
occurrences of gen, though arising from the replacement of the same variable,
can be reduced to different terms:

Example 4. Consider again the TRS R of Ex. 1 and the term t = add(x, x).
Clearly, it can only be narrowed to an even number: z, s(s(z)), . . . However, t̂
can also be reduced to an odd number, e.g., t̂ = add(gen, gen) → add(z, gen) →
gen → s(gen) → s(z).

To avoid such derivations, the notion of admissible derivation [6] is introduced:

Definition 4 (admissible derivation). Let R be a TRS over F and t ∈
T (F , V) be a term. A derivation for t̂ in Rgen is called admissible iff all the
occurrences of gen originating from the replacement of the same variable are
reduced to the same term in this derivation.

Termination of Narrowing in Left-Linear Constructor Systems 119

Now, we can already state the soundness of variable elimination:

Lemma 2 (soundness). Let R be a left-linear constructor TRS over a signa-
ture F = D 	 C and s′ ∈ T (F ∪ {gen}, V) be a term. If s′ →∗ s′′ →p,R t′ is an
admissible derivation in Rgen and R ∈ R, then s �∗

R t with ŝ = s′ and t̂σ = t′

for some constructor substitution σ.

Obviously, given a TRS R, no set of terms containing occurrences of gen is
generally →Rgen-terminating because of the definition of function gen. Luckily,
we are interested in a weaker property: we may allow infinite derivations in
Rgen as long as the number of functions different from gen reduced in these
derivations is kept finite (i.e., gen is only used to produce the values needed to
perform the next rewrite step). This idea is formalized by using the notion of
relative termination [25]:

Definition 5 (relative termination). Let R and Q be rewrite systems. Let
T be a set of terms. T is relatively →R∪Q-terminating to R if every infinite
derivation t0 →R∪Q t1 →R∪Q . . . contains only finitely many →R-steps.

The following theorem states one of the main results of this paper:

Theorem 2. Let R be a left-linear constructor TRS over a signature F = D	C
and let T ⊆ T (F , V) be a set of terms. Then, T is �R-terminating iff T̂ is
relatively →Rgen-terminating to R.

The above result lays the ground for analyzing the termination of narrowing by
reusing existing techniques for proving the termination of rewriting. The next
section presents two such approaches.

4 Automating the Termination Analysis

4.1 From Abstract Terms to Argument Filterings

In general, we are not interested in providing a set of terms T for proving that T
is �-terminating. Rather, it is much more convenient to allow the user to provide
a higher-level specification of the function calls in which she is interested in. For
this purpose, we introduce the notion of an abstract term, which is inspired by
the mode declarations of logic programming.

Definition 6 (abstract term). Let F = D	C be a signature. An abstract term
over F has the form f(m1, . . . , mn), where f ∈ D is a defined function symbol
and mi, i = 1, . . . , n, is either g (definitely ground) or v (possibly variable).

Any abstract term implicitly induces a (possibly infinite) set of terms:

Definition 7 (concretization, γ). Let F be a signature and tα an abstract
term over F . The concretization of tα, in symbols γ(tα), is obtained as follows:

γ(f(m1, . . . , mn)) = {f(t1, . . . , tn) ∈ T (F , V) | ti ∈ T (C) if mi = g, i = 1, . . . , n}

Given a set of abstract terms T α, we let γ(T α) = {γ(tα) | tα ∈ T α}.

120 G. Vidal

Consider the TRS of Ex. 1 and the abstract term add(g, v). Then, γ(add(g, v)) =
{add(z, x), add(z, z), add(s(z), x), add(s(z), z), add(s(z), s(x)), add(s(z), s(z)), . . .}.

Thanks to Theorem 2, given a set of abstract terms T α, we can prove that
γ(T α) is �R-terminating by proving that γ̂(T α) is relatively →Rgen-terminating
to R. This approach, however, presents two drawbacks:

– the set γ(T α) is generally infinite and
– checking relative termination require non-standard techniques and tools.

In order to overcome these drawbacks, we introduce the use of (a simplified
version of) argument filterings:

Definition 8 (argument filtering, π). An argument filtering over a signature
F = D 	 C is a function π such that, for every defined function f/n ∈ D, we
have π(f) ⊆ {1, . . . , n}. Argument filterings are extended to terms as follows:3

– π(x) = x for all x ∈ V,
– π(c(t1, . . . , tn)) = c(π(t1), . . . , π(tn)) for all c/n ∈ C, n ≥ 0, and
– π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) for all f/n ∈ F , n ≥ 0,

where π(f) = {i1, . . . , im} and 1 ≤ i1 < . . . < im ≤ n.

Given a TRS R, we let π(R) = {π(l) → πrhs(r) | l → r ∈ R}, where the
auxiliary function πrhs is defined as follows:

– πrhs(x) = ⊥ for all x ∈ V,
– πrhs(c(t1, . . . , tn)) = c(πrhs (t1), . . . , πrhs(tn)) for all c/n ∈ C, n ≥ 0, and
– πrhs(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) for all f/n ∈ F , n ≥ 0,

where π(f) = {i1, . . . , im} and 1 ≤ i1 < . . . < im ≤ n

where ⊥ is a fresh constant constructor not appearing in C.

The original notion of argument filtering in [8,26] may return a single argument
position so that π(f(t1, . . . , tn)) = π(ti) if π(f) = i; furthermore, it applies to
both constructor and defined function symbols. We consider a simpler defini-
tion because our argument filterings will be automatically derived from a set of
abstract terms (cf. Sect. 5), where only defined function symbols occur.

On the other hand, our argument filterings replace those variables of the right-
hand sides that are not below a defined function symbol by a fresh constant ⊥.
This is done in order to avoid the introduction of extra variables (i.e., variables
that appear in the right-hand side of a rule but not in its left-hand side). Con-
sider, e.g., the rule add(z, y) → y and the argument filtering π = {add �→ {1}}.
Then, (π(add(z, y)) → π(y)) = (add(z) → y) that contains an extra variable y.
Our definition above returns instead (π(add(z, y)) → πrhs(y)) = (add(z) → ⊥).

In the following, though, we are not interested in arbitrary argument filterings
but only in what we call safe argument filterings.

3 By abuse of notation, we keep the same symbol for the original function and the
filtered function with a possibly different arity.

Termination of Narrowing in Left-Linear Constructor Systems 121

Definition 9 (safe argument filtering). Let R be a TRS over a signature
F = D 	C and let T α be a finite set of abstract terms. We say that an argument
filtering π is safe for T α in R iff

– for all tα ∈ T α, if π(tα) = f(m1, . . . , mn), then mi = g for all i = 1, . . . , n;
– for all narrowing step s1 �R s2, if π(s1|p) ∈ T (F) for all subterm s1|p with

root(s1|p) ∈ D, then π(s2|q) ∈ T (F) for all subterm s2|q with root(s2|q) ∈ D.

Intuitively speaking, an argument filtering π is safe for a set of abstract terms T α

if π filters away all non-ground arguments of the terms in γ(T α) as well as the
non-ground arguments of any function call that can be obtained by narrowing.

Example 5. Consider the TRS R = {f(s(x), y) → f(y, x)} and the set T α =
{f(g, v)}. Given the argument filtering π = {f �→ {1}}, although π(f(g, v)) = f(g)
holds (the first condition in Def. 9), this argument filtering is not safe because
there exists a narrowing step f(s(z), x) � f(x, z) such that π(f(s(z), x)) = f(s(z))
is ground but π(f(x, z)) = f(x) is not.

A useful property is that the filtered form of a TRS does not contain extra
variables when the argument filtering is safe (see [36]).

In the following, we consider that the input for the termination analysis is a
left-linear TRS together with a safe argument filtering. An algorithm for gener-
ating safe argument filterings from abstract terms can be found in Sect. 5.

4.2 A Direct Approach to Termination Analysis

In this section, we present a direct approach for proving the termination of
narrowing by extending the well-known dependency pair technique [8].

The remainder of this section adapts and extends some of the developments
in [8]. Given a TRS R over a signature F , for each f/n ∈ F , we let f�/n be a
fresh tuple symbol (a constructor); we often write F instead of f�. Given a term
f(t1, . . . , tn) with f ∈ D, we let t� denote f�(t1, . . . , tn).

Definition 10 (dependency pair [8]). Given a TRS R over a signature F =
D 	 C, the associated set of dependency pairs, DP(R), is defined as follows:4

DP(R) = {l� → t� | l → r ∈ R, r|p = t, and root(t) ∈ D}

Example 6. Consider the following TRS R defining the functions append and
reverse over lists built from nil (the empty list) and cons:

append(nil, y) → y
append(cons(x, xs), y) → cons(x, append(xs, y))

reverse(nil) → nil
reverse(cons(x, xs)) → append(reverse(xs), cons(x, nil))

4 Note that if R is a TRS, so is DP(R).

122 G. Vidal

Here, we have the following dependency pairs DP(R):

APPEND(cons(x, xs), y) → APPEND(xs, y) (1)
REVERSE(cons(x, xs)) → REVERSE(xs) (2)
REVERSE(cons(x, xs)) → APPEND(reverse(xs), cons(x, nil)) (3)

In order to prove termination, we should try to prove that there are no infinite
chains of dependency pairs. The standard notion of chain in [8], however, cannot
be used because we are interested in the termination of narrowing (i.e., the
relative termination of rewrite sequences in which variables are replaced by gen).

Definition 11 (chain). Let R be a TRS over a signature F and let π be an
argument filtering over F that is extended over tuple symbols so that π(f �) =
π(f) for all f ∈ D. A (possibly infinite) sequence of pairs s1 → t1, s2 → t2,
. . . from DP(R) is a (DP(R), R, π)-chain if the following conditions hold:5

– there exists a constructor substitution σ such that t̂iσ →∗
Rgen

ŝi+1σ for every
two consecutive pairs in the sequence;

– we have π(ŝiσ), π(t̂iσ) ∈ T (F) for all i > 0 (i.e., π filters away all occur-
rences of gen).

Example 7. Consider the TRS R of Example 6 and its dependency pairs DP(R).
Here, Rgen = R ∪ {gen → nil, gen → cons(gen, gen), gen → z, gen �→ s(gen)}.
Then, we have that “(1), (1), . . .” is an infinite (DP(R), R, π)-chain for any ar-
gument filtering in which π(APPEND) = {2} since there exists a substitution
σ = {y �→ nil} such that (we denote the dependency pair (1) by l1 → t1)

t̂1σ = APPEND(gen, nil) →Rgen APPEND(cons(gen, gen), nil) = l̂1σ

and π(APPEND(gen, nil)) = π(APPEND(cons(gen, gen), nil)) = nil ∈ T (F). Note
that it would be not a chain in the standard dependency pair method.

The following result states the soundness of our approach:

Theorem 3. Let R be a left-linear constructor TRS over a signature F = D	C
and let T α be a finite set of abstract terms. Let π be a safe argument filtering for
T α in R that is extended over tuple symbols so that π(f �) = π(f) for all f ∈ D.
If there is no infinite (DP(R), R, π)-chain, then γ(T α) is �R-terminating.

In order to show the absence of (DP(R), R, π)-chains automatically, we can fol-
low the DP framework [20]. In this context, a DP problem is a tuple (P , R, π)
where P and R are TRSs and π is an argument filtering. If there is no associated
infinite (P , R, π)-chain, we say that the DP problem is finite. Termination meth-
ods are then formulated as DP processors that take a DP problem and return a
new set of DP problems that should be solved instead.

A DP processor Proc is sound if, for all DP problems d, we have that d is finite
if all DP problems in Proc(d) are finite. Therefore, a termination proof starts
5 As in [8], we assume fresh variables in every (occurrence of a) dependency pair and

that the domain of substitutions may be infinite.

Termination of Narrowing in Left-Linear Constructor Systems 123

with the initial DP problem (DP(R), R, π) and applies sound DP processors
until an empty set of DP problems is obtained.

We could adapt most of the standard DP processors in order to deal with the
use of data generators and argument filterings following similar ideas as those in
[33]. For the sake of brevity, we only present one of such DP processors:

Theorem 4 (argument filtering processor). Given a DP problem (P , R, π),
let Proc return {(π(P), π(R), id)}, where id(f) = {1, . . . , n} for all defined func-
tion symbol f/n occurring in π(R). Then Proc is sound.

The nice property of this DP processor is that, after its application, all existing
DP processors of [20] for proving the termination of rewriting can also be used
for proving the termination of narrowing.

Example 8. Consider the TRS of Example 6, the set of abstract terms T α =
{append(g, v)}, and the argument filtering π = {append �→ {1}, reverse �→ {1}}
which is safe for T α. Given this DP problem, the argument filtering processor
returns a new DP problem that consists of the following elements:

Dependency pairs:

⎧
⎨

⎩

APPEND(cons(x, xs)) → APPEND(xs)
REVERSE(cons(x, xs)) → REVERSE(xs)
REVERSE(cons(x, xs)) → APPEND(reverse(xs))

Rewrite system:

⎧
⎪⎪⎨

⎪⎪⎩

append(nil) → ⊥
append(cons(x, xs)) → cons(x, append(xs))

reverse(nil) → nil
reverse(cons(x, xs)) → append(reverse(xs))

Argument filtering: id = {append �→ {1}, reverse �→ {1}}
The derived DP problem can be proved terminating using standard techniques.

4.3 A Transformational Approach

In this section, we present an alternative approach for proving the termination
of narrowing. The basic idea is similar to that in the previous section: using an
argument filtering to eliminate those subterms that might be bound to a data
generator. Now, however, our aim is to transform the original TRS R into a new
TRS R′ so that narrowing terminates in R if rewriting terminates in R′. As a
consequence, any termination technique for rewrite systems can be applied to
prove the termination of narrowing.

Our transformation is based on the argument filtering transformation of [26],
that we simplify because, in our case, an argument filtering never returns a
single argument position and, moreover, it is only defined over defined function
symbols. Roughly speaking, our program transformation generates, for every
rule l → r of the original program,

– a filtered rule π(l) → πrhs (r) and
– an additional rule π(l) → π(t), for each subterm t of r that is filtered away

in πrhs(r) and such that π(t) is not a constructor term.

124 G. Vidal

Definition 12 (argument filtering transformation). Let R be a TRS over
a signature F = D 	 C and let π be an argument filtering over F . The argument
filtering transformation AFTπ is defined as follows:

AFTπ(R) = π(R)∪{π(l) → π(r′) | l → r ∈ R, r′ ∈ decπ(r), π(r′) �∈ T (C, V)}

where the auxiliary function decπ is defined inductively as follows:

decπ(x) = ∅ (x ∈ V)
decπ(c(t1, . . . , tn)) =

⋃n
i=1 decπ(ti) (c ∈ C)

decπ(f(t1, . . . , tn)) =
⋃

i	∈π(f){ti} ∪
⋃n

i=1 decπ(ti) (f ∈ D)

Example 9. Consider the TRS R of Ex. 6. If we consider the argument filtering
π1 = {append �→ {1}, reverse �→ {1}} of Ex. 8, then AFTπ1(R) returns the same
filtered rewrite system of Ex. 8.

Consider now the argument filtering π2 = {append �→ {2}, reverse �→ {1}}.
Then, AFTπ2(R) returns the following TRS:

append(y) → y
append(y) → cons(⊥, append(y))
reverse(nil) → nil

reverse(cons(x, xs)) → append(cons(x, nil))
reverse(cons(x, xs)) → reverse(xs)

Note that the last rule is introduced because we have

decπ2(append(reverse(xs), cons(x, nil))) = {reverse(xs)}

The next result is the main contribution of this section:

Theorem 5. Let R be a left-linear constructor TRS and T α be a finite set of
abstract terms, with T = γ(T α). Let π be a safe argument filtering for T α in R.
If AFTπ(R) is terminating, then T is �R-terminating.

The significance of Theorem 5 is that AFTπ(R) can be analyzed using standard
techniques and tools for proving the termination of TRSs since no data generator
is involved in the derivations of AFTπ(R).

We note that [18] proves that the AFT transformation is subsumed by the DP
method regarding simple termination (i.e., termination based on simplification
orderings). In our case, the approach of this section is not directly subsumed by
that of Sect. 4.2 because we consider termination rather than simple termina-
tion. Also, the AFT transformation can be seen as a preprocessing stage so that
standard techniques (e.g., the DP method, but not only this method) can be
applied to the transformed program, as we will see in the next section.

5 The Termination Tool TNT

In this section, we describe the implementation of a program transformation that
follows the approach presented in Sect. 4.3. The tool, called TNT, is publicly
available from http://german.dsic.upv.es/filtering.html.

Termination of Narrowing in Left-Linear Constructor Systems 125

The tool is written in Prolog (around 650 lines of code) and includes a parser
for TRSs (which accepts the TRS format of the Termination Problem Data Base,
TPDB, see http://www.lri.fr/~marche/tpdb/), a static analysis to infer a safe
argument filtering from an abstract term—we consider a single abstract term
rather than a set of abstract terms for simplicity—and the AFTπ transformation
of Sect. 4.3. The tool is available through a web interface, whose input data are

– a left-linear constructor TRS R (the user can either write it down or choose
it from a selection of TRSs from the TPDB) and

– an initial abstract term tα that describes a (possibly infinite) set of initial
terms γ(tα).

The tool returns a transformed TRS R′ whose termination w.r.t. standard
rewriting implies the termination of narrowing for γ(tα) in the original TRS
R. The termination of R′ can be analyzed using any tool for proving the termi-
nation of rewriting. In particular, the web interface allows the user to check the
termination of the transformed TRS using the AProVE tool [19].

For generating a safe argument filtering for a given set of abstract terms,
we have adapted a simple binding-time analysis [24], which is often used in
partial evaluation to propagate static (i.e., ground) and dynamic (i.e., possibly
nonground) values through a program. We consider binding-times g (ground)
and v (possibly variable), rather than the more traditional S (static) and D
(dynamic) in the partial evaluation literature (though their meaning is the same).
The output of the binding-time analysis is a division which includes a mapping
f/n �→ (m1, . . . , mn) for every defined function f/n ∈ D, where each mi is a
binding-time. A binding-time environment is a substitution mapping variables
to binding-times. The least upper bound over binding-times is defined as follows:

g � g = g g � v = v v � g = v v � v = v

The least upper bound operation can be extended to sequences of binding-times
and divisions in the natural way, e.g.,

(g, v, g) � (g, g, v) = (g, v, v)

{f �→ (g, v), g �→ (g, v)} � {f �→ (g, g), g �→ (v, g)} = {f �→ (g, v), g �→ (v, v)}
Following [24], our binding-time analysis includes two auxiliary functions, Bv

and Be, which are defined in our context as follows:

Bv[[x]] g/n ρ = (
n times
︷ ︸︸ ︷
g, . . . , g) (if x ∈ V)

Bv[[c(t1, . . . , tn)]] g/n ρ = Bv[[t1]] g/n ρ � . . . � Bv[[tn]] g/n ρ (if c ∈ C)
Bv[[f(t1, . . . , tn)]] g/n ρ = bt � (Be[[t1]] ρ, . . . , Be[[tn]] ρ) (if f = g, f ∈ D)

bt (if f �= g, f ∈ D)
where bt = Bv[[t1]] g/n ρ � . . . � Bv[[tn]] g/n ρ

Be[[x]] ρ = xρ (if x ∈ V)
Be[[h(t1, . . . , tn)]] ρ = Be[[t1]] ρ � . . . � Be[[tn]] ρ (if h ∈ C ∪ D)

Roughly speaking, an expression (Bv[[t]] g/n ρ) returns a sequence of n binding-
times that denote the (least upper bound of the) binding-times of the arguments

126 G. Vidal

of the calls to g/n that occur in t in the context of the binding-time environment
ρ. An expression (Be[[t]] ρ) then returns g if t contains no variable which is bound
to v in ρ, and v otherwise.

The binding-time analysis is computed as the fixpoint of an iterative process.
Assuming that the input abstract term is f1(m1, . . . , mn1), the initial division is

div0 = {f1 �→ (m1, . . . , mn1), f2 �→ (g, . . . , g), . . . , fk �→ (g, . . . , g)}

where f1/n1, . . . , fk/nk are the defined functions of the TRS. Then, given a di-
vision div i = {f1 �→ b1, . . . , fk �→ bk}, the next division in the sequence is

div i+1 = { f1 �→ b1 � Bv[[r1]] f1/n1 e(b1, l1) � . . . � Bv[[rj]] f1/n1 e(bj, lj),
. . . ,
fk �→ bk � Bv[[r1]] fk/nk e(b1, l1) � . . . � Bv[[rj]] fk/nk e(bj , lj) }

where l1 → r1, . . . , lj → rj , j ≥ k, are the rules of R and the auxiliary function
e(b, l) for computing a binding-time environment from a sequence of binding-
times and the left-hand side of a rule is defined as follows:

e((m1, . . . , mn), f(t1, . . . , tn)) =
⋃n

i=1
{x �→ mi | x ∈ Var(ti)}

Once we get a fixpoint, i.e., div i+1 = div i for some i ≥ 0, the corresponding
safe argument filtering π is easily obtained by filtering away the positions of
nonground arguments. For instance, if the computed division is

div = {f1 �→ (m1
1, . . . , m

1
n1

), . . . , fk �→ (mk
1 , . . . , mk

nk
)}

the corresponding argument filtering is

πdiv = {f1 �→ {i | m1
i = g}, . . . , fk �→ {i | mk

i = g}}

The fact that πdiv is a safe argument filtering is a trivial consequence of the
fact that the computed division div is congruent [24], i.e., of the fact that an
argument of a function is classified as g only when every call to this function has
a ground term in this argument (according to the computed binding-times).

6 Related Work

Despite the relevance of narrowing as a symbolic computation mechanism, we
find in the literature only a few works devoted to analyze its termination.

For instance, Dershowitz and Sivakumar [14] defined a narrowing procedure
that incorporates pruning of some unsatisfiable goals. Similar approaches have
been presented by Chabin and Réty [10], where narrowing is directed by a graph
of terms, and by Alpuente et al. [2], where the notion of loop-check is introduced
to detect some unsatisfiable equations. Also, Antoy and Ariola [4] introduced
a sort of memoization technique for functional logic languages so that, in some
cases, a finite representation of an infinite narrowing space can be achieved.

Termination of Narrowing in Left-Linear Constructor Systems 127

All these approaches, though, are basically related with pruning the narrowing
search space rather than analyzing the termination of narrowing.

On the other hand, Christian [11] introduced a characterization of TRSs for
which narrowing terminates. Basically, he requires the left-hand sides to be flat,
i.e., all arguments are either variables or ground terms. Unfortunately, as we
discussed at the beginning of Sect. 3, the termination of narrowing for arbitrary
terms is quite a strong property that almost no TRS fulfills.

Recent approaches to termination analysis of narrowing include [32,7]. How-
ever, they focused on quasi-termination (i.e., whether only finitely many different
function calls are reachable) and its application to partial evaluation. Moreover,
only needed narrowing and inductively sequential TRSs were considered.

Nishida and Miura [30] adapted the dependency graph method for proving the
termination of narrowing. The presented dependency pair method (an extension
of that introduced in [31]) is, in principle, not comparable with ours (Sect. 4.2),
since we do not allow extra variables in TRSs and they do not remove some
(unnecessary) extra-variables of right-hand sides as we do with πrhs .

The closest approach is that of Schneider-Kamp et al. [33], who presented
an automated termination analysis for logic programs. In their approach, logic
programs are first translated into TRSs and, then, logic variables are replaced
by possibly infinite terms. An extension of the dependency pair framework for
dealing with argument filterings is presented, which is similar to our extension
in Sect. 4.2. Besides considering a different target (proving termination of SLD
resolution vs proving termination of narrowing), there are a number of differences
between both approaches. First, [33] considers the replacement of logic variables
by infinite terms, while we use data generators (so that we could reuse existing
results relating narrowing and standard finitary rewriting). Also, they consider
arbitrary argument filterings but require the variable condition (i.e., that the
filtered TRS contains no extra variables). In our case, argument filterings must
be safe which, in principle, do not always imply that the variable condition holds
in filtered TRSs. Actually, we allow extra variables above the defined functions
of the right-hand sides of the filtered rules (which are then replaced by ⊥ in
πrhs since they play no role for termination in our context). Furthermore, we
introduce a simple binding-time analysis in order to automate the generation
of safe argument filterings from higher-level abstract terms. Finally, we also
present a transformational approach to proving termination, while [33] focuses
on a direct approach based on the dependency pair framework.

7 Conclusions

We have presented in this paper new techniques for proving the termination
of narrowing in left-linear constructor systems. Our approach allows one to an-
alyze the termination of narrowing by analyzing the termination of rewriting,
so that one can reuse existing methods and tools in the extensive literature on
termination of rewriting.

Regarding future work, we find it interesting to investigate the application
of our results in order to improve the precision of narrowing-driven partial

128 G. Vidal

evaluation [32]. Also, it would be useful to extend our approach in order to
accept source Curry programs rather than TRSs.

Acknowledgements. We thank Naoki Nishida and the anonymous referees for
their many suggestions for improving this paper. We also thank the developers
of the AProVE tool for allowing us to interface the TNT tool with the web
interface of AProVE.

References

1. Albert, E., Vidal, G.: The Narrowing-Driven Approach to Functional Logic Pro-
gram Specialization. New Generation Computing 20(1), 3–26 (2002)

2. Alpuente, M., Falaschi, M., Ramis, M.J., Vidal, G.: Narrowing Approximations as
an Optimization for Equational Logic Programs. In: Penjam, J., Bruynooghe, M.
(eds.) PLILP 1993. LNCS, vol. 714, pp. 391–409. Springer, Heidelberg (1993)

3. Antoy, S.: Optimal non-deterministic functional logic computations. In: Hanus,
M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298, pp.
16–30. Springer, Heidelberg (1997)

4. Antoy, S., Ariola, Z.: Narrowing the Narrowing Space. In: Hartel, P.H., Kuchen,
H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 1–15. Springer, Heidelberg (1997)

5. Antoy, S., Echahed, R., Hanus, M.: A Needed Narrowing Strategy. Journal of the
ACM 47(4), 776–822 (2000)

6. Antoy, S., Hanus, M.: Overlapping Rules and Logic Variables in Functional Logic
Programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006)

7. Arroyo, G., Ramos, J.G., Silva, J., Vidal, G.: Improving Offline Narrowing-Driven
Partial Evaluation using Size-Change Graphs. In: Puebla, G. (ed.) LOPSTR 2006.
LNCS, vol. 4407, pp. 60–76. Springer, Heidelberg (2007)

8. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236(1-2), 133–178 (2000)

9. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

10. Chabin, J., Réty, P.: Narrowing Directed by a Graph of Terms. In: Book, R.V.
(ed.) RTA 1991. LNCS, vol. 488, pp. 112–123. Springer, Heidelberg (1991)

11. Christian, J.: Some Termination Criteria for Narrowing and E-narrowing. In: Ka-
pur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 582–588. Springer, Heidelberg (1992)

12. de Dios-Castro, J., López-Fraguas, F.: Extra Variables Can Be Eliminated from
Functional Logic Programs. In: Proc. of the 6th Spanish Conf. on Programming
and Languages (PROLE 2006), ENTCS, vol. 188, pp. 3–19. (2007)

13. Dershowitz, N.: Termination of Rewriting. Journal of Symbolic Computa-
tion 3(1&2), 69–115 (1987)

14. Dershowitz, N., Sivakumar, G.: Goal-Directed Equation Solving. In: Proc. of 7th
National Conf. on Artificial Intelligence, pp. 166–170. Morgan Kaufmann, San
Francisco (1988)

15. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language,
http://www.informatik.uni-kiel.de/∼mh/curry/

16. Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for
the NRL Protocol Analyzer and its Meta-Logical Properties. Theoretical Computer
Science 367(1-2), 162–202 (2006)

http://www.informatik.uni-kiel.de/~mh/curry/

Termination of Narrowing in Left-Linear Constructor Systems 129

17. Escobar, S., Meseguer, J.: Symbolic Model Checking of Infinite-State Systems Us-
ing Narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168.
Springer, Heidelberg (2007)

18. Giesl, J., Middeldorp, A.: Eliminating Dummy Elimination. In: McAllester, D.
(ed.) CADE 2000. LNCS, vol. 1831, pp. 309–323. Springer, Heidelberg (2000)

19. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1. In: Furbach, U., Shankar,
N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg
(2006)

20. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

21. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming 19&20, 583–628 (1994)

22. Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS,
vol. 353. Springer, Heidelberg (1989)

23. Hullot, J.M.: Canonical Forms and Unification. In: Bibel, W. (ed.) CADE 1980.
LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)

24. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

25. Klop, J.W.: Term Rewriting Systems: A Tutorial. Bulletin of the European Asso-
ciation for Theoretical Computer Science 32, 143–183 (1987)

26. Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer, Heidelberg
(1999)

27. López-Fraguas, F., Sánchez-Hernández, J.: TOY: A Multiparadigm Declarative
System. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631,
pp. 244–247. Springer, Heidelberg (1999)

28. Meseguer, J., Thati, P.: Symbolic Reachability Analysis Using Narrowing and its
Application to Verification of Cryptographic Protocols. Electronic Notes in Theo-
retical Computer Science 117, 153–182 (2005)

29. Moreno-Navarro, J.J., Kuchen, H., Loogen, R., Rodriguez-Artalejo, M.: Lazy Nar-
rowing in a Graph Machine. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS,
vol. 463, pp. 298–317. Springer, Heidelberg (1990)

30. Nishida, N., Miura, K.: Dependency Graph Method for Proving Termination of
Narrowing. In: Proc. of WST 2006, pp. 12–16 (2006)

31. Nishida, N., Sakai, M., Sakabe, T.: Narrowing-Based Simulation of Term Rewriting
Systems with Extra Variables. ENTCS, 86(3) (2003)

32. Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for
Inductively Sequential Systems. In: Proc. of the 10th ACM SIGPLAN Int’l Conf.
on Functional Programming (ICFP 2005), pp. 228–239. ACM Press, New York
(2005)

33. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termina-
tion Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)

34. Sheard, T.: Type-Level Computation Using Narrowing in Ωmega. In: In Proc. of
PLPV 2006. ENTCS, vol. 174, pp. 105–128 (2007)

35. Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM 21(4), 622–642 (1974)

36. Vidal, G.: Termination of Narrowing in Left-Linear Constructor Systems. Technical
report, DSIC, Technical University of Valencia (2007),
http://www.dsic.upv.es/∼gvidal/german/papers.html#tnt

http://www.dsic.upv.es/~gvidal/german/papers.html#tnt

Complexity Analysis by Rewriting�

Martin Avanzini1 and Georg Moser2

1 Master Program in Computer Science, University of Innsbruck, Austria
martin.avanzini@student.uibk.ac.at

2 Institute of Computer Science, University of Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. In this paper we introduce a restrictive version of the mul-
tiset path order, called polynomial path order. This recursive path order
induces polynomial bounds on the maximal number of innermost rewrite
steps. This result opens the way to automatically verify for a given pro-
gram, written in an eager functional programming language, that the
maximal number of evaluation steps starting from any function call is
polynomial in the input size. To test the feasibility of our approach we
have implemented this technique and compare its applicability to exist-
ing methods.

1 Introduction

Term rewriting is a conceptually simple but powerful abstract model of com-
putation that underlies much of declarative programming. In rewriting, proving
termination is an important research field. Powerful methods have been intro-
duced to establish termination of a given term rewrite system. One of the most
natural ways to proof termination is the use of interpretations. Consequentially
this technique has been introduced quite early. Moreover, if one is interested in
automatically proving termination, polynomial interpretations provide a natural
starting point, cf. [10]. However, termination proofs via polynomial interpreta-
tions are limited as the longest possible rewrite sequences admitted by rewrite
systems compatible with a polynomial interpretation are double-exponential (in
the size of the initial term), see [13]. Another well-studied (and direct) termina-
tion technique is the use of reduction orders—for example simplification orders.
Still this technique is limited, which can again be shown by the analysis of the
induced derivation length, cf. [12,25,15]. In recent years the emphasis shifted
towards transformation techniques like the dependency pair method or semantic
labeling. Transformation techniques have significantly increased the possibility
to automatically prove termination.

Once we have established termination of a given rewrite system R, it seems
natural to direct the attention to the analysis of the complexity of R. In rewrit-
ing the complexity of a rewrite system R is measured as the maximal derivation
length with respect to R. As mentioned above for direct termination methods

� This research is supported by FWF (Austrian Science Fund) project P20133.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 130–146, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Complexity Analysis by Rewriting 131

a significant amount of investigations has been conducted, providing a suitable
foundation for further research. Unfortunately, almost nothing is known about
the length of derivations induced by state-of-the-art termination techniques like
the dependency pair method or semantic labeling. For the dependency pair
method no results on the induced derivation length are known. Partial result
with respect to semantic labeling are reported in [18].

In this paper we introduce a restriction of the multiset path order, called poly-
nomial path order (denoted as >pop∗). Our main result states that this recur-
sive path order induces polynomial bounds on the maximal length of innermost
rewrite steps. As we have successfully implemented this technique, we thus can
automatically verify for a given term rewrite system R that R admits at most
polynomial innermost derivation length (on the set of constructor-based terms).
This opens the way to automatically verify for a given program—written in an
eager functional programming language—that its runtime complexity is polyno-
mial (in the input size). The only restrictions in the applicability of the result
are that (i) the functional program P is transformable into a term rewrite system
R and (ii) a feasible (i.e., polynomial) derivation length with respect to R gives
rise to a feasible runtime complexity of P. In short the transformation has to be
non-termination and complexity preserving.

The definition of polynomial path orders employs the idea of tiered recur-
sion [6]. Syntactically this amount to a separation of arguments into normal
and safe argument. (Below this will be governed by the presences of mappings
safe and nrm associating with each function symbol a list of argument positions.)
We explain our approach by an example rewrite system that clearly admits at
most polynomial derivation length.

Example 1. Consider the following rewrite system Rmult.

add(x, 0) → x mult(0, y) → 0

add(s(x), y) → s(add(x, y)) mult(s(x), y) → add(y, mult(x, y))

We suppose that all arguments of the successor (s) are safe (safe(s) = {1}), that
the second argument of addition (add) is safe (safe(add) = {2}) and that all
arguments of multiplication (mult) are normal (safe(mult) = ∅). Furthermore
let the (strict) precedence > be defined as mult > add > s. Then Rmult is
compatible with >pop∗ (see Definition 4) and as a consequence of our main
theorem (see Section 3) we conclude that the number of rewrite steps starting
from mult(sn(0), sm(0)) is polynomially bounded in n and m. (Here we write sn(0)
as abbreviation of s(. . . (s(0) . . .)) with n occurrences of the successor symbol s.)

The polynomial path order is an extension of the path order for FP introduced
by Arai and the second author in [1]. A central motivation of this research is the
observation that the direct application of the latter order is only successful on
a handful of (very simple) rewrite systems. The path order for FP gains only
power if additional transformations are performed. Unfortunately, such powerful
transformations are difficult to find automatically.

Further note that the polynomial path order is to some extent related to the
light multiset path order introduced by Marion [17]. Roughly speaking the light

132 M. Avanzini and G. Moser

multiset path order is a tamed version of the multiset path order, characterising
the functions computable in polytime. It seems important to stress that the
below stated main theorem fails for the light multiset path order. This can be
easily seen from the next example.

Example 2. Consider the following rewrite system Rbin. (This is Example 2.21
about binomial coefficients from [22].)

bin(x, 0) → s(0) bin(s(x), s(y)) → +(bin(x, s(y)), bin(x, y))
bin(0, s(y)) → 0

For a precedence that fulfills bin > s, bin > + and separations of arguments
safe(bin) = ∅, safe(+) = {1, 2}, we obtain that Rbin is compatible with the light
multiset path order, cf. [17]. However it is straightforward to verify that the
(innermost) derivation height of bin(sn(0), sm(0)) is exponential in n.

To test the feasibility of our approach we have implemented a small complex-
ity analyser based on the polynomial path order and compare its applicability
to existing techniques. To do so, we also have implemented the light multiset
path order and a restricted form of polynomial interpretations, so-called additive
polynomial interpretations, cf. [7]. Note that compatibility with addivite polyno-
mial interpretations induces polynomial derivation length for constructor-based
terms, cf. [7].

The research in [7,17] falls into the realm of implicit complexity theory. In
this context related work to our research is due to Bonfante et al. [8] but see
also seminal work by Hofmann [14] and Schwichtenberg [20]. While [14,20] are
incomparable to our techniques, a comparison to [8] is also not straightforward.
Our principal concern is that the termination techniques employed allow for an
complexity analysis of the subjected program. On the other hand the crucial
feature of quasi-interpretations (the central contribution of [8]) is their weak
monotonicity, hence termination can only be shown in conjunction with other
termination techniques. For example the class of polytime computable functions
can be characterised as the class of functions computable by confluent construc-
tor rewrite systems compatible with the multiset path order and that admit
only additive quasi-interpretations, cf. [8]. This interesting result renders an in-
sightful implicit characterisation of the polytime computable function, but it is
of little help, if one wants to obtain a complexity analysis of a term rewrite
system subjected to a modern termination prover. Recently an interesting appli-
cation of quasi-interpretations has been reported by Lucas and Peña [16]. Here
the dependency pair method is used in conjunction with quasi-interpretations
to obtain bounds on the memory consumption of Safe programs. This method is
easily automatable, but new ideas are necessary to yield bounds on the runtime
behaviour of functional programs.

The remainder of this paper is organised as follows. In the next section we re-
call basic notions and starting points of this paper. In Section 3 we have collected
our main results. In order to prove these results we extend results originally pre-
sented in [1]. Our findings in this direction are presented in Section 4. The central

Complexity Analysis by Rewriting 133

argument to prove the main theorem is then given in Section 5. In Section 6 we
give the experimental evidence mentioned above. In Section 7 we touch upon
an application of our main theorem in recent work (together with Hirokawa and
Middeldorp) where we study the termination behaviour of Scheme programs.
Finally in Section 8 we conclude and mention possible future work.

2 Preliminaries

We assume familiarity with term rewriting [4,23]. Let V denote a countably
infinite set of variables and F a signature. The set of terms over F and V is
denoted by T (F , V). We always assume that F contains at least one constant.
The arity of a function symbol f is denoted as ar(f). Let > be a precedence on
the signature F . The rank of a function symbol is defined inductively as follows:
rk(f) = 1+max{rk(g) | g ∈ F ∧f > g}. (Here we employ the convention that the
maximum of an empty set equals 0.) We write � to denote the subterm relation
and � for its converse. The strict part of � is denoted by �. Var(t) denotes the
set of variables occurring in a term t. The size (depth) of a term t is denoted as
size(t) (dp(t)). The width of a term t is defined inductively as follows: wd(t) = 1,
if t is a variable or a constant, otherwise if t = f(t1, . . . , tn) with n > 0, we set
wd(t) = max{n, wd(t1), . . . , wd(tn)}. The Buchholz norm of a term t is defined
inductively as follows: ‖t‖ = 1, if t is a variable and for t = f(t1, . . . , tn) we set
‖t‖ = 1 + max{n, ‖t1‖, . . . , ‖tn‖}. We write [t1, . . . , tn] to denote multisets and
� for the summation of multisets.

A term rewrite system (TRS for short) R over T (F , V) is a set of rewrite
rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). (If not mentioned otherwise, we
assume R is finite.) The root symbols of left-hand sides of rewrite rules are called
defined, while all other function symbols are called constructors. For a given
signature F the defined symbols are denoted as D, while the constructor symbol
are collected in C. The smallest rewrite relation that contains R is denoted by
→R. We simply write → for →R if R is clear from context. Let s and t be
terms. If exactly n steps are preformed to contract s to t we write s →n t. A
term s ∈ T (F , V) is called a normal form if there is no t ∈ T (F , V) such that
s → t. The innermost rewrite relation i−→R of a TRS R is defined on terms as
follows: s i−→R t if there exist a rewrite rule l → r ∈ R, a context C, and a
substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of lσ are
normal forms of R. A TRS is called confluent if for all s, t1, t2 ∈ T (F , V) with
s →∗ t1 and s →∗ t2 there exists a term t3 such that t1 →∗ t3 and t2 →∗ t3. A
TRS is non-overlapping if it has no critical pairs, cf. [4]. A TRS R is left-linear if
for all rules l → r ∈ R, all variables in l occur at most once. If R is additionally
non-overlapping, then R is called orthogonal. Note that every orthogonal TRS
is confluent. A constructor TRS is a TRS whose signature F can be partitioned
into the defined symbols D and constructor symbols C in such a way that the
left-hand side of each rule has the form f(s1, . . . , sn) with f ∈ D and for all
i: si ∈ T (C, V). A defined function symbol is completely defined if it does not
occur in any ground term in normal form. A TRS is completely defined if each

134 M. Avanzini and G. Moser

defined symbol is completely defined. An element of T (C, V) is called a value; we
set Val(R) = T (C, V). We call a TRS terminating if no infinite rewrite sequence
exists. The derivation length of a term t with respect to a terminating TRS R
and rewrite relation →R is defined as usual: Dl(R,→)(s) = max{n | ∃t s →n t}.
We call a term t = f(t1, . . . , tn) constructor-based if all its arguments ti are
values, i.e., ti ∈ T (C, V) for all 1 � i � n. The set Tb collects all constructor-
based terms. The runtime complexity (with respect to R) is defined as follows:
RcR(m) = max{Dl(R, i−→)(t) | t = f(t1, . . . , tn) ∈ Tb and

∑n
i size(ti) � m}.

A proper order is a transitive and irreflexive relation. The reflexive closure of
a proper order 	 is denoted as 	=. A proper order 	 is well-founded if there
is no infinite decreasing sequence t1 	 t2 	 t3 · · · . A well-founded proper order
that is also a rewrite relation is called a reduction order. We say a reduction
order 	 and a TRS R are compatible if R ⊆ 	. It is well-known that a TRS is
terminating if and only if there exists a compatible reduction order.

3 Main Result

In the sequel R denotes a constructor TRS over a (possible variadic) signature
F . Let > denote a precedence on F such that for all f ∈ D we have for all
c ∈ C: f > c. (Recall that F contains at least one constant.) We assume that R
is completely defined, i.e., ground normal forms and ground values coincide.1

For each n-ary function symbol f ∈ D of fixed arity, we suppose the existence
of a mapping safe that associates with f a (possibly empty) list {i1, . . . , im}
with 1 � i1 < · · · < im � n. For a mapping safe and a term t = f(t1, . . . , tn),
safe(f) denotes the safe argument positions of t. The argument positions of
t not included in safe(f) are called normal and are denoted by nrm(f). The
mapping safe (nrm) is referred to as safe (normal) mapping. We generalise safe
(normal) mappings to constructor symbols and variadic function symbols as
follows: For each function symbol f ∈ C, we fix safe(f) = {1, . . . , ar(f)} and for
each variadic function symbol f ∈ D we assert safe(f) = ∅. The normalised
signature Fn contains a function symbol fn for each f ∈ F . If f is of fixed-
arity and nrm(f) = {i1, . . . , ip}, then ar(f) = p. The normalised signature Cn is
defined accordingly.

Definition 3. Let > be a precedence and safe a safe mapping. We define >pop

inductively as follows: s = f(s1, . . . , sn) >pop t if one of the following alternatives
holds:

1. f is a constructor and si >=
pop t for some i ∈ {1, . . . , n},

2. si >=
pop t for some i ∈ nrm(f), or

3. t = g(t1, . . . , tm) with f ∈ D and f > g and s >pop ti for all 1 � i � m.

We write s >pop t 〈i〉 if s >pop t follows by application of clause (i) in Definition 3.
A similar notation will be used for the orders defined below.
1 The assumption that R is completely defined arises naturally in the context of

implicit characterisation of complexity classes. We follow this convention to some
extent, but show that this restriction is not necessary.

Complexity Analysis by Rewriting 135

Definition 4. Let > be a precedence and safe a safe mapping. We define the
polynomial path order >pop∗ (POP∗ for short) inductively as follows: s =
f(s1, . . . , sn) >pop∗ t if one of the following alternatives holds:

1. s >pop t,
2. si >=

pop∗ t for some i ∈ {1, . . . , n},
3. t = g(t1, . . . , tm), with f ∈ D, f > g, and the following properties hold:

– s >pop∗ ti0 for some i0 ∈ safe(g) and
– either s >pop ti or s � ti and i ∈ safe(g) for all i
= i0,

4. t = f(t1, . . . , tm) and for nrm(f) = {i1, . . . , ip}, safe(f) = {j1, . . . , jq} the
following properties hold:
– [si1 , . . . , sip] (>pop∗)mul [ti1 , . . . , tip],
– [sj1 , . . . , sjq] (>=

pop∗)mul [tj1 , . . . , tjq].

Here (>pop∗)mul denotes the multiset extension of >pop∗ and recall that for vari-
adic function symbols, the set of safe arguments is empty.

Example 5. Consider the following TRS Rinsert (This is a simplification of an
example from [17].)

if(true, x, y) → x x�0 → true

if(false, x, y) → y 0� s(x) → false

ins(x, nil) → cons(x, nil) s(x)� s(y) → x�y

ins(x, cons(y, ys)) → if(y�x, cons(x, cons(y, ys)), cons(y, ins(x, ys)))

We represent lists with the help of the constructors nil and cons. To show com-
patibility with POP∗, we assume a precedence 	 that fulfills ins 	 if, ins 	 �,
ins 	 cons, 0 	 true, and 0 	 false. Further we define a safe mapping safe as
follows:

safe(s) = {1} safe(if) = {1, 2, 3} safe(ins) = ∅

safe(cons) = {1, 2} safe(�) = {2}

It is straightforward to verify that the induced polynomial path order 	pop∗ is
compatible with Rinsert.

An easy inductive argument shows that if s ∈ Val(R) and s >pop∗ t, then t ∈
Val(R). Note that >pop∗ is not a reduction order. Although >pop∗ is a well-
founded proper order that is closed under substitutions, the order is not closed
under contexts due to the restrictive definition of clause 4 in the above definition.
However we still have the following theorem, which follows as the multiset path
order extends >pop∗.

Theorem 6. Every TRS R that is compatible with >pop∗ for some well-founded
precedence > is terminating.

136 M. Avanzini and G. Moser

As normal and safe arguments are distinguisable, we strengthen the notion of
runtime complexity as follows: Rcn

R(m) = max{Dl(R, i−→)(t) | t = f(t1, . . . , tn) ∈
Tb and

∑
i∈nrm(f) size(ti) � m}. This function is called the normal runtime

complexity.

Main Theorem. Let R be a finite, completely defined constructor TRS. As-
sume further R is compatible with >pop∗, i.e., R ⊆ >pop∗. Then the induced
(normal) runtime complexity is polynomial.

Assume R is a finite, constructor TRS that is not completely defined; i.e., at
least one defined function symbol occurs in a ground normal form. To obtain a
completely defined TRS it suffices to add suitable rules, thus we arrive at the
following corollary, see [3] for the proof.

Corollary 7. Let R be a finite, constructor TRS. Assume further R is compati-
ble with >pop∗, i.e., R ⊆ >pop∗. Then the induced (normal) runtime complexity
is polynomial.

Definition 8. The predicative rewrite relation s p−→ t is defined as follows: s p−→ t
if s → t by contracting safe argument positions first, i.e., if there exist a rewrite
rule l → r ∈ R, a context C, and a substitution σ such that s = C[lσ], t = C[rσ]
and all safe argument position of lσ are in normal form.

Clearly predicative rewriting is a generalisation of innermost rewriting. Essen-
tially following the pattern of the proof of the theorem, we arrive at the following
corollary.

Corollary 9. Let R be a finite constructor TRS. Assume further R is com-
patible with >pop∗, i.e., R ⊆ >pop∗. Then for all f ∈ F of arity n, with
nrm(f) = {i1, . . . , ip} and for all values s1, . . . , sn: Dl(R,

p−→)(f(s1, . . . , sn)) is
bounded by a polynomial in the sum of the sizes of the normal argument terms
si1 , . . . , sip .

Remark 10. Beckmann and Weiermann observed in [5] that general rewriting is
too powerful to serve as a suitable computation model to characterise the class
of polytime computable functions as a TRS. Their notion of a feasible rewrite
system is reflected adequately in the notion of predicative rewriting.

4 Polynomial Path Order on Sequences

In this section we extend definitions and results originally presented in [1]. The
main aim is to define a polynomial path order � on sequences of terms such that
� induces polynomial derivation length with respect to a compatible TRS R.

Let �
∈ Fn be a variadic function symbol. We extend the normalised signa-
ture Fn by � and define Seq(Fn, V) = T (Fn ∪ {�}, V). Elements of Seq(Fn, V)
are sometimes referred to as sequences. Instead of �(s1, . . . , sn), we usually
write (s1 · · · sn) and denote the empty sequence () as ∅. Let a = (a1 . . . an)

Complexity Analysis by Rewriting 137

and b = (b1 . . . bm) be elements of Seq(Fn, V). For a
= ∅ and b
= ∅ define
a @ b = (a1 . . . an b1 . . . bm). If a = ∅ (b = ∅) we set a @ b = b (a @ b = a).

Let > denote the precedence on Fn induced by the total precedence > on F .
Buchholz [9] was the first to observe that finite term rewrite systems compatible
with recursive path orders 	 are even compatible to finite approximations of 	.
This observation carries over to polynomial path orders. The following definitions
generalise the path order on FP (POP for short) as defined in [1]. To keep this
exposition short, we only state the definition of approximations of the polynomial
path order � on sequences. The general definitions for � and � is obtained
by dropping the restrictions on depth and width, cf. [3]. Note that � can be
conceived as the limit of the finite approximations �k. We use the convention
that f ∈ Fn, i.e., s = f(s1, . . . , sn) implicitly indicates that f
= �.

Definition 11. Let k, l � 1 and let > be a precedence. We define �
l
k inductively

as follows: s �
l
k t for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following

alternatives holds:

1. si (�=)l
k t for some i ∈ {1, . . . , n},

2. s = f(s1, . . . , sn) such that of the following two possibilities holds:
– t = g(t1, . . . , tm) with f > g or
– t = (t1 · · · tm),

and s �
l−1
k ti for all 1 � i � m, and m < k + wd(s), or

3. s = (s1 · · · sn), t = (t1 · · · tm) and the following properties hold:
– [t1, . . . , tm] = N1 � · · · � Nn,
– there exists i ∈ {1, . . . , n} such that [si]
= Ni,
– for all 1 � i � n such that [si]
= Ni we have si �

l
k r for all r ∈ Ni

– m < k + wd(s).

We write �k to abbreviate �
k
k.

Definition 12. Let k, l � 1 and let > be a precedence. We define the approx-
imation of the polynomial path order �l

k on sequences inductively as follows:
s �l

k t for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following alternatives
holds:

1. s �
l
k t,

2. si (�=)l
k t for some i ∈ {1, . . . , n},

3. s = f(s1, . . . , sn), t = (t1 · · · tm), and the following properties hold:
– s �l−1

k ti0 for some i0 ∈ {1, . . . , n},
– s �

l−1
k ti for all i
= i0, and

– m < k + wd(s),
4. s = f(s1, . . . , sn), t = f(t1, . . . , tm) with (s1 · · · sn) �l

k (t1 · · · tm), or
5. s = (s1 · · · sn), t = (t1 · · · tm) and the following properties hold:

– [t1, . . . , tm] = N1 � · · · � Nn,
– there exists i ∈ {1, . . . , n} such that [si]
= Ni,
– for all 1 � i � n such that [si]
= Ni: si �

l
k r for all r ∈ Ni, and

– m < k + wd(s).

We write �k to abbreviate �k
k.

138 M. Avanzini and G. Moser

Note that ∅ is the minimal element of �k and �k and that � is a reduction
order. The following lemmas are direct consequences of the definitions.

Lemma 13

1. If s �k t and k < l, then s �l t.
2. If s �k t, then C[s] �k C[t], where C[�] denotes a context over Seq(Fn, V).

Lemma 14. If s �l
k t, then dp(t) � dp(s)+ l and wd(t) � k +wd(s). Moreover,

if s �l
k t, then ‖t‖ � ‖s‖ + k + l.

By Lemma 14, there exists a (uniform) constant c such that ‖t‖ � ‖s‖ + c,
whenever s �k t. And thus if we have a �k-descending sequence s = t0 �k t1 �k

· · · �k t� we conclude that ‖ti‖ � ci + ‖s‖ for all i � 1.

Definition 15. We define

Gk(s) := max{� ∈ N | ∃(t0, . . . , t�) : s = t0 �k t1 �k · · · �k t�}

Fk,p(m) := max

{

Gk(f(t1, . . . , tn)) : rk(f) = p ∧
∑

i

Gk(ti) � m

}

In the definition of Fk,p, we assume f ∈ Fn.

A direct consequence of Definition 15 is that Gk((t1 · · · tn)) = n +
∑n

i=1 Gk(ti)
holds. The following lemma is generalisation of a similar lemma in [1] and the
proof given in [1] can be easily adapted.
Lemma 16. We define dk,0 := k + 1 and dk,p+1 := (dk,p)k + 1. Then for all
k, p there exists a constant c (depending only on k and p) such that for all m:
Fk,p(m) � c(m + 2)dk,p.
As a consequence of Lemma 16 we obtain that Fk,p(m) is asymptotically bounded
by mdk,p for large enough m. The following lemma follows by a standard induc-
tive argument.
Lemma 17. For all k, there exists a constant c such that for s ∈ T (Cn∪{�}, V):
Gk(s) � c · size(s)2.
We arrive at the main theorem of this section.

Theorem 18. For all f ∈ Fn of arity n, for all s1, . . . , sn ∈ T (Cn ∪ {�}), and
for all k: Gk(f(s1, . . . , sn)) is bounded by a polynomial in the sum of the sizes of
s1, . . . , sn. The polynomial depends only on k and the rank of f .

Proof. Let f ∈ Fn and let s1, . . . , sn ∈ T (Cn ∪ {�}). By Lemma 16 there exists
c1 ∈ N depending on k and rk(f) such that

Gk(f(s1, . . . , sn)) � mc1 (1)

if
∑

i Gk(si) � m and m is large enough. By Lemma 17, there exists a constant
c2 (depending on the rank of the function symbols in si) such that Gk(si) �
c2 · size(si)2. Replacing m in (1) by c2 · (

∑
i size(si))2 and setting c = cc1

2 yields:

Gk(f(s1, . . . , sn)) �

⎡

⎣c2 ·
(

∑

i

size(si)

)2
⎤

⎦

c1

= c ·
(

∑

i

size(si)

)2c1

�

Complexity Analysis by Rewriting 139

5 Predicative Interpretation

The purpose of this section is to prove our main theorem. Let R denote a com-
pletely defined, constructor TRS. We embed the order >pop∗ into �k such that
k depends only on R. This becomes possible if we represent the information
on normal and safe arguments underlying the definition of >pop∗ explicitly by
interpreting the signature F in the normalised signature Fn.

Definition 19. The maximal size of the safe values of a term t is defined as
follows:

sv(t) =

{
‖t‖ t ∈ Val(R)
max{sv(ti) | i ∈ safe(f)} t = f(t1, . . . , tn) and t
∈ Val(R)

We represent sv(t) unary. Let s denote a fresh constant that is minimal in the
precedence > on Fn. We define SV(t) = U(sv(t)), where U : N → T ({s, �})
denotes the representation of n as a sequence (s · · · s) with n occurrences of
the constant s. As a direct consequence of the definition, we have: s � t implies
SV(s) �k SV(t) for any k.

Definition 20. Let safe denote a safe mapping. A predicative interpretation
(with respect to T (F , V)) is a pair (S, N) of mappings S : T (F , V) → T (Fn, V)
and N : T (F , V) → T (Fn, V), defined as follows:

S(t) =

{
∅ if t ∈ Val(R)
(fn(N(sj1), . . . , N(sjp)) S(si1) . . . S(siq)) if t
∈ Val(R)

N(t) = (S(t)) @ SV(t)

In the definition of S, we assume t = f(s1, . . . , sn), nrm(f) = {j1, . . . , jp} and
safe(f) = {i1, . . . , iq}. (Recall that safe(f) ∪ nrm(f) = {1, . . . , n}.)

Note that N(s) �k S(s) (and thus N(s) �k S(s)) holds for any k. We arrive at
the two main lemmas of this section.

Lemma 21. Let f(l1, . . . , ln) → r ∈ R, let σ : V → Val(R) be a substitu-
tion and let k = 2 · max{size(r) | l → r ∈ R}. If f(l1, . . . , ln) >pop r then
fn(N(li1σ), . . . , N(lipσ)) �k Q(rσ) for Q ∈ {S, N}, where nrm(f) = {i1, . . . , ip}.

Proof. We sketch the proof plan: Instead of showing the lemma directly, one
shows the following stronger property for terms s, t ∈ T (F , V) where s is either
a value or of form f(s1, . . . , sn) such that siσ ∈ Val(R) for all 1 � i � n.

(†)
Let � = ‖t‖, if f ∈ D, then s >pop t implies Q(sσ) �2�

fn(N(s1σ), . . . , N(spσ)) �2� Q(tσ); otherwise N(sσ) �2�

N(tσ) holds.

Here we suppose safe(f) = {p+1, . . . , n}. To show (†) one proceeds by induction
on >pop. See [3] for the complete proof. ��

140 M. Avanzini and G. Moser

Lemma 22. Let l → r ∈ R, let σ : V → Val(R) be a substitution, and let
k = 2 · max{size(r) | l → r ∈ R}. If l >pop∗ r then Q(lσ) �k Q(rσ) for
Q ∈ {S, N}.

Proof. Similar to the proof of Lemma 21 one shows the following property for
terms s, t ∈ T (F , V) where s is either a value or of form f(s1, . . . , sn) such that
siσ ∈ Val(R) for all 1 � i � n.

(‡)

Let � = ‖t‖. If f ∈ D, then s = f(s1, . . . , sn) >pop∗
t implies (i) fn(N(s1σ), . . . , N(spσ)) �2� S(tσ) and (ii)
(fn(N(s1σ), . . . , N(spσ))) @ SV(sσ) �2� N(tσ). Otherwise
if f ∈ C then N(sσ) �2� N(tσ) holds.

Here we suppose safe(f) = {p+1, . . . , n}. To show (‡) one proceeds by induction
on >pop∗. See [3] for the complete proof. ��

From Lemmata 21 and 22 the main lemma of this section follows.

Lemma 23. Let s and t be terms such that s i−→ t and let k = 2 · max{size(r) |
l → r ∈ R}. Then Q(s) �k Q(t) for Q ∈ {S, N}.

Main Theorem. Let R be a finite, completely defined constructor TRS. As-
sume further R is compatible with >pop∗. Then the induced (normal) runtime
complexity is polynomial.

Proof. Let t = f(t1, . . . , tn) be term in Tb and without loss of generality let
safe(f) = {p + 1, . . . , n}. We set k = 2 · max{size(r) | l → r ∈ R}. By Lemma 23
any innermost rewrite steps t i−→ u induces S(t) �k S(u). Thus we obtain:

Dl(R, i−→)(f(t1, . . . , tn)) = max{� | ∃u t i−→� u}
� max{� | ∃ (s′1, . . . , s

′
�) : S(t) �k s′1 �k · · · �k s′�}

� Gk(S(f(t1, . . . , tn)))

Next notice that S(f(t1, . . . , tn)) = (fn(N(t1), . . . , N(tp)) ∅ . . . ∅). By Theo-
rem 18 and the observation following Definition 15 we see that

Gk((fn(N(t1), . . . , N(tp)) ∅ . . .∅)) � n + 1 + Gk(fn(N(t1), . . . , N(tp)))

Employing Lemma 16, we see (for a fixed f) that n+1+Gk(fn(N(t1), . . . , N(tp)))
is asymptotically bounded by a polynomial in the sum of the sizes of the argu-
ments N(t1),. . . ,N(tp). By definition size(N(ti)) = ‖ti‖ � size(ti) for all 1 � i � p.

Hence for each term t ∈ Tb, Dl(R, i−→)(t) is bounded by a polynomial in the sum
of the sizes of the normal argument terms of t. In particular, as the signature F
is finite, the normal runtime complexity function is polynomial. ��

Remark 24. In the above theorem we assume a constructor TRS. It is not dif-
ficult to see that this restriction is not necessary. (Essentially one replaces the
application of Lemmata 21 and 22 by the application of the properties (†) and
(‡) respectively.) However, the restriction that the arguments of f are in normal
form is necessary. Hence we prefer the given formulation of the theorem.

Complexity Analysis by Rewriting 141

6 Experimental Data

To prove compatibility of a given TRS R with recursive path orders we have to
find a precedence > such that the induced order is compatible with R. When
we want to orient R by a polynomial path order >pop∗ we additionally require a
suitable safe mapping. To automate this search we encode the constraint s >pop∗
t into a propositional formula:

τ(s >pop∗ t) = τ1(s >pop∗ t) ∨ τ2(s >pop∗ t) ∨ τ3(s >pop∗ t) ∨ τ4(s >pop∗ t)

Here τ i(·) is designed to encode clause (i) from Definition 4. Based on such
an encoding, compatibility of a TRS with >pop∗ becomes expressible as the
satisfiability of the formula

(∧
l→r∈R τ(l >pop∗ r)

)
∧P ∧S. Here the subformula

P is satisfiable if and only if all the variables >f,g (defined below) encode a
strict precedence, see [26] for a suitable definition of P . The subformula S is
used to cover the additional conditions imposed on safe mappings defined in the
beginning of Section 3.

We only describe cases (2)–(4), the encoding for case (1)—the comparison
using the weaker order >pop—can be easily derived in a similar fashion. If s =
f(s1, . . . , sn) we set τ2(s >pop∗ t) =

∨
i si >=

pop∗ t, otherwise τ2(s >pop∗ t) = ⊥.
For case (3) we introduce for every function symbol f and argument position i of
f the (propositional) variables βf,i, such that βf,i = true represents the assertion
i ∈ safe(f). Moreover, for all function symbols f, g we introduce variables >f,g

such that truth of >f,g expresses that f > g holds. If s = f(s1, . . . , sn) and
t = g(t1, . . . , tm) for f ∈ D with f
= g, we define τ3(s >pop∗ t) as:

>f,g ∧
m∨

i0=1

(τ (s >pop∗ ti) ∧ βg,i0 ∧
m∧

i=1,i�=i0

(τ (s >pop ti) ∨ (βg,i ∧ (s � ti)))

(For s, t of different shape, we set τ3(s >pop∗ t) = ⊥.) To deal with case (4) we
follow [19]. The main idea is to describe a multiset comparison in terms of mul-
tiset covers. Formally, a multiset cover is a pair of mappings γ : {1, . . . , m} →
{1, . . . , n} and ε : {1, . . . , n} → {true, false} such that for all i, j (1 � i �
n, 1 � j � m): if ε(i) = true then the set {j | γ(j) = i} is a singleton. It
is easy to see that [s1, . . . , sn] (=)mul [t1, . . . , tm] if there exists a multiset
cover (γ, ε) such that for each j there exists an i with γ(j) = i and ε(i) =
true implies si = tj , while ε(i) = false implies si 	 tj . Similarly we obtain
[s1, . . . , sn] 	mul [t1, . . . , tm] if [s1, . . . , sn] (=)mul [t1, . . . , tm] and ε(i) = false
for some i ∈ {1, . . . , n}.

This definition allows an easy encoding of multiset comparisons and based on
it, clause (4) of Definition 4 becomes representable (for terms s = f(s1, . . . , sn)
and t = f(t1, . . . , tm)) as the conjunction of the following two conditions together
with the assumption that there exists a suitable multiset cover (γ, ε):

– whenever γ(j) = i then the indicated argument positions i and j, are either
both normal or both safe,

– at least one cover is strict (ε(i) = false) for some normal argument position
i of f .

142 M. Avanzini and G. Moser

We introduce variables γi,j and εi, where γi,j = true represents γ(j) = i and
εi = true denotes ε(i) = true (1 � i � n, 1 � j � m). Summing up, we set
τ4(s (>pop∗)mul t) (s = f(s1, . . . , sn) and t = f(t1, . . . , tm)) equal to:

n∧

i=1

m∧

j=1

(
γi,j →

(
εi → τ (si = tj)

)
∧

(
¬εi → τ (si 	 tj)

)
∧

(
βf,i ↔ βf,j

))

∧
m∧

j=1

one(γ1,j , . . . , γn,j) ∧
n∧

i=1

(
εi → one(γi,1, . . . , γi,m)

)
∧

n∨

i=1

(
¬βf,i ∧ ¬εi

)

Here one(α1, . . . , αn) is satisfiable if and only if exactly one of the vari-
ables α1, . . . , αn is true. And if s, t do not have the assumed form, we set
τ4(s (>pop∗)mul t) = ⊥.

We compare the polynomial path order POP∗ to a restricted class of polyno-
mial interpretations (SMC for short) [7] and to LMPO [17]. SMC refers to simple-
mixed polynomial interpretations where constructor symbols are interpreted by
a strongly linear (also called additive) polynomial [7]. Defined symbols on the
other hand are interpreted by simple-mixed polynomials [10]. Since POP∗ and
LMPO are in essence syntactic restrictions of MPO we also provide a compari-
son to MPO. POP∗ is implemented using the previously described propositional
encoding; while the implementation of SMC rests on a propositional encoding
of the techniques described in [10]. To check satisfiability we employ MiniSat.2

LMPO and MPO are implemented using an extension of the constraint solving
technique described in [11], which allows us to compare different implementation
techniques at the same time.

As testbed we use those TRSs from the termination problem data base version
4.0 that can be shown terminating with at least one of the tools that partici-
pated in the termination competition 2007.3 We use three different testbeds:
T collects the 957 terminating TRSs from TPDB, TC collects the 449 TRSs
from the TPDB that are also constructor systems, and TCO collects the 236
TRSs that are terminating, constructor based and orthogonal.4 The results of
our comparisons are given in Table 1. The tests presented below were conducted
on a small complexity analyser running single-threaded on a 2.1 GHz Intel Core
2 Duo with 1 GB of memory. For each system we used a timeout of 30 seconds.

Some comments: What is noteworthy is the good performance of POP∗as a
direct termination method in comparison to MPO. It is well-known that MPO
implies primitive recursive derivation length, cf. [12]. In contrast to this POP∗

implies polynomial runtime complexity and is thus a much weaker order. Still
more than half of the TRSs compatible with MPO are also compatible with

2 Available online at http://minisat.se
3 These 957 systems can be found online: http://www.lri.fr/~marche/termination-
competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit

=120
4 The main reason for this delineation is that in related work [7,17] confluent con-

structor TRS are considered.

http://minisat.se
http://www.lri.fr/~marche/termination-competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit=120
http://www.lri.fr/~marche/termination-competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit=120
http://www.lri.fr/~marche/termination-competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit=120

Complexity Analysis by Rewriting 143

Table 1. Experimental results

POP∗ LMPO SMC MPO

T Yes 65 74 156 106
Maybe 892 812 395 847
Timeout (30 sec.) 0 71 406 4

TC Yes 41 54 83 65
Maybe 408 372 271 381
Timeout (30 sec.) 0 23 95 3

TCO Yes 19 25 38 29
Maybe 217 201 147 207
Timeout (30 sec.) 0 10 51 0

Average yes time (milliseconds) 15 14 1353 10

POP∗. On the other hand the comparison between POP∗ and LMPO is quite
favourable for our approach. Compatibility with LMPO tells us that the given
TRS is (in principle) polytime computable, while compatibility with POP∗ tells
additionally that the runtime of a straightforward implementation (using an
innermost strategy) is polytime computable. Hence compatibility with POP∗

provides us with a theoretical stronger result, while the difference on the exper-
imental data appears negligible.

The good performance of SMC in strength is a clear indication that currently
(restrictions of) semantic termination techniques (like polynomial interpreta-
tions) are of some interest in automatically estimating the runtime complexity
of TRSs. This may be surprising, as for additive polynomial interpretations it is
(almost) trivial to check that the induced upper bound on the derivation height
is polynomial. However, the significant increase in the time necessary to find an
additive polynomial interpretation, as indicated in Table 1, clearly shows the
limits of semantic methods for large examples.

7 An Application: Complexity of Scheme Programs

In recent work together with Hirokawa and Middeldorp (see [2]) we study the
runtime complexity of (a subset of) Scheme programs by a translation into so-
called S-expression rewrite systems (SRS for short). By designing the translation
to be complexity preserving, the complexity of the initial Scheme program can
be estimated by analysing the complexity of the resulting SRS. Here we indicate
how our main theorem is applicable to (a subset of) S-expression rewrite systems,
cf. [24].

Definition 25. Let K be a set of constants, V be a set of variables such that
V ∩K = ∅, and ◦ /∈ K∪V a variadic function symbol. We define the set S(K, V)

144 M. Avanzini and G. Moser

of S-expressions built from K and V as T (K ∪ {◦}, V). We write (s1 · · · sn)
instead of ◦(s1, . . . , sn). An S-expression rewrite system (SRS for short) is a
TRS with the property that the left- and right-hand sides of all rewrite rules are
S-expressions.

Let S be an SRS over S(K, V) and let K = D ∪ C such that D ∩ C = ∅. We call
the elements of C constructor constants and the elements of D defined constants.
We momentarily redefine the notion of value in the context of SRSs. The set of
values Val(S) of S with respect to C is inductively defined as follows:

1. if v ∈ K then v ∈ Val(S),
2. if v1, . . . , vn ∈ Val(S) and c ∈ C then (c v1 . . . vn) ∈ Val(S).

Observe that (defined) constants are values, this reflects that in Scheme proce-
dures are values, cf. [21] and allows for a representation of higher-order programs.
Scheme programs are conceivable as SRSs allowing conditional if expressions in
conjunction with an eager, i.e., innermost rewrite strategy. Thus we can delin-
eate a class of SRSs that easily accommodate a suitably large subset of Scheme
programs.

Definition 26. S is called a constructor if, for every l → r ∈ S, l = (l0 · · · ln)
with l0 ∈ D and li ∈ Val(S) for all i ∈ {1, . . . , n}. (Here the set of values Val(S)
is defined with respect to C.)

Corollary 27. Let > denote a precedence on K such that for all f ∈ D we
have for all c ∈ C: f > c and let >pop∗ denote the induced POP∗. Let S be a
constructor SRS compatible with >pop∗. Then for all f ∈ D of arity n and for
all values s1, . . . , sn: Dl(S, i−→)((f s1 . . . sn)) is bounded by a polynomial in the
sum of the sizes of the arguments s1, . . . , sn.

Proof. It is important to note that the set of S-expressions S(K, V) equals T (K∪
{◦}, V), i.e., SRSs are first-order rewrite systems, whose single defined symbol
is the variadic function symbol ◦.

Hence Theorem 27 follows almost immediately from Corollary 7. However the
fact that according to the above definition values may contain defined symbol
need to be taken into account. For that is suffices to redefine Definitions 19
and 20 in the natural way. It is not difficult to argue that suitable adaption of
Lemmata 21 and 22 to SRSs are provable. ��

8 Conclusion

In this paper we have introduced a restriction of the multiset path order, called
polynomial path order (POP∗ for short). Our main result states that POP∗

induces polynomial runtime complexity. In Section 6 we have provided evidence
that our approach performs well in comparison to related methods. In Section 7
the necessary theory to apply our main theorem in the context of (higher-order)
functional languages with eager evaluations has been developed. In related work

Complexity Analysis by Rewriting 145

(together with Hirokawa and Middeldorp), studying the termination behaviour
and the runtime complexity of (a subclass of higher-order) Scheme programs,
this basis has proven quite useful, cf. [2].

In concluding we also want to mention that as an easy corollary to our main
theorem we obtain that POP∗ also characterises the polytime computable func-
tions. To be precise the polytime computable functions are exactly the functions
computable by an orthogonal constructor TRS (based on a simple signature)
compatible with POP∗. (Here simple signature means that the size of any con-
structor term depends linearly on its depth, an equivalent restriction is necessary
in [17].) See [3] for details.

In future work we will strengthen the applicability of our method. The ex-
perimental evidence presented in Section 6 shows that compatibility of rewrite
systems with POP∗ can be easily and quickly tested. However, the strength of the
method seems to be improvable. One possible field of future work is to extend
POP∗ to quasi-precedences. The theoretical changes necessary to accomodate
quasi-precedences seem to be manageable. Another natural extension is to com-
bine POP∗ with the transformation technique of semantic labeling, cf. [27]. It is
easy to see that semantic labeling (in the basic form) does not affect the deriva-
tion length. Furthermore for finite models the main theorem remains directly
applicable.

References

1. Arai, T., Moser, G.: Proofs of Termination of Rewrite Systems for Polytime Func-
tions. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp.
529–540. Springer, Heidelberg (2005)

2. Avanzini, M., Hirokawa, N., Middeldorp, A., Moser, G.: Towards an automatic run-
time complexity analysis of Scheme programs by rewriting. (Submitted December
2007).5

3. Avanzini, M., Moser, G.: Complexity analysis by rewriting. Draft, 5 (October 2007)
4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,

Cambridge (1998)
5. Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime

functions and related complexity classes. Archive 36, 11–30 (1996)
6. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime

functions. Comput. Complexity 2(2), 97–110 (1992)
7. Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Algorithms with polynomial

interpretation termination proof. JFP 11(1), 33–53 (2001)
8. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-intepretations and small space

bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer,
Heidelberg (2005)

9. Buchholz, W.: Proof-theoretic analysis of termination proofs. APAL 75, 57–65
(1995)

10. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-
nation using polynomial interpretations. JAR 34(4), 325–363 (2005)

5 Available online at
http://cl-informatik.uibk.ac.at/∼georg/list.publications.html .

http://cl-informatik.uibk.ac.at/~georg/list.publications.html

146 M. Avanzini and G. Moser

11. Hirokawa, N., Middeldorp, A.: Tsukuba termination tool. In: Nieuwenhuis, R. (ed.)
RTA 2003. LNCS, vol. 2706, pp. 311–332. Springer, Heidelberg (2003)

12. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105(1), 129–140 (1992)

13. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)

14. Hofmann, M.: Linear types and non-size increasing polynomial time compuations.
In: Proc. 14th LICS, pp. 464–473 (1999)

15. Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. TCS 269,
433–450 (2001)

16. Lucas, S., Peña, R.: Termination and complexity bounds for SAFE programs. In:
Proc. 7th PROLE, pp. 233–242 (2007)

17. Marion, J.: Analysing the implicit complexity of programs. IC 183, 2–18 (2003)
18. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Hermann,

M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 75–89. Springer,
Heidelberg (2006)

19. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving ter-
mination using recursive path orders and SAT solving. In: Konev, B., Wolter, F.
(eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg
(2007)

20. Schwichtenberg, H.: An arithmetic for polynomial-time computation. TCS 357(1),
202–214 (2006)

21. Sperber, M., Dybvig, R.K., Flatt, M., Stratten, A.v., et al.: Revised report on the
algorithmic language Scheme (2007), http://www.r6rs.org

22. Steinbach, J., Kühler, U.: Check your ordering - termination proofs and open prob-
lems. Technical Report SEKI-Report SR-90-25, University of Kaiserslautern (1990)

23. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

24. Toyama, Y.: Termination of S-expression rewriting systems: Lexicographic path
ordering for higher-order terms. In: van Oostrom, V. (ed.) RTA 2004. LNCS,
vol. 3091, pp. 40–54. Springer, Heidelberg (2004)

25. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path ordering imply multiply recursive derivation lengths. TCS 139, 355–362 (1995)

26. Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 389–403. Springer, Heidelberg (2007)

27. Zantema, H.: Termination of term rewriting by semantic labelling. FI 24, 89–105
(1995)

http://www.r6rs.org

Rewriting and Call-Time Choice: The HO Case�

Francisco Javier López-Fraguas, Juan Rodŕıguez-Hortalá,
and Jaime Sánchez-Hernández

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

fraguas@sip.ucm.es, jrodrigu@fdi.ucm.es, jaime@sip.ucm.es

Abstract. It is known that the behavior of non-deterministic functions
with call-time choice semantics, present in current functional logic lan-
guages, is not well described by usual approaches to reduction like ordi-
nary term rewriting systems or λ-calculus. The presence of HO features
makes things more difficult, since reasoning principles that are essential in
a standard (i.e., deterministic) functional setting, like extensionality, be-
come wrong. In this paper we propose HOlet-rewriting, a notion of rewrit-
ing with local bindings that turns out to be adequate for programs with
HO non-deterministic functions, as it is shown by strong equivalence re-
sults with respect to HOCRWL, a previously existing semantic framework
for such programs. In addition, we give a sound and complete notion of HO-
let-narrowing, we show by a case study the usefulness of the achieved com-
bination of semantic and reduction notions, and finally we prove within our
framework that a standard approach to the implementation ofHO features,
namely translation to FO, is still valid for HO nondeterministic functions.

1 Introduction

Functional logic programming (FLP, for short; see [12,14] for surveys) inte-
grates features of logic programming and functional programming. Typically
FLP adopts mostly a (lazy) functional style, thus making intensive use of higher
order (HO) functions. However, most of the work about FLP focuses on first
order (FO) aspects of programs, thus limiting the applicability of results.

This is not a satisfactory situation, especially taking into account that the
presence of functions that are at the same time HO and non-deterministic leads
to somehow surprising behaviors, as shown by the example we sent recently to
the Curry mailing list [13]:

Example 1. Consider the following program computing with natural numbers
represented by the constructors 0 and s/1, and where + is defined as usual.

g X -> 0 f -> g f’ X -> f X
h X -> s 0 f -> h

fadd F G X -> (F X) + (G X) fdouble F -> fadd F F

� This work has been partially supported by the Spanish projects Merit-Forms-UCM
(TIN2005-09207-C03-03) and Promesas-CAM (S-0505/TIC/0407).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 147–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

Notice that f and f ′ are non-deterministic functions that are (by definition
of f ′) extensionally equivalent; from the point of view of standard functional
programming they should be seen as ‘the same function’. However, consider the
expressions (fdouble f 0) and (fdouble f ’ 0). In modern FLP languages like Curry
[16] or Toy [21], the possible values for (fdouble f 0) are 0, s (s 0), while (fdouble
f ’ 0) can be in addition reduced to s 0.

This behavior corresponds to call-time choice [17,11], the semantics for non-
determinism adopted by those systems. Operationally call-time choice is very
close to the sharing mechanism used in functional languages to implement lazy
evaluation.

The example was sent1 to point out that η-expansion and η-reduction are
not valid for such systems, because extensionally equivalent functions (e.g., f
and f ’) can be semantically distinguishable when put in the same context (e.g.,
double [] 0), a fact that does not happen neither in standard (i.e, deterministic)
functional programs2, nor in FO FLP. We remark also that with run-time choice
[17,11], f and f ′ will be indistinguishable (double f 0 and double f ’ 0 would both
produce 0, s 0, s (s 0) as possible results). Therefore, it is the combination HO
+ Non-determinism + call-time choice which makes things different.

That combination was addressed in HOCRWL [7,8], an extension to HO of
CRWL3 [11], a semantic framework specifically devised for FLP with call-time
choice semantics for non-determinism (see [28] for a survey of CRWL and its ex-
tensions). HOCRWL provides logic and model-theoretic semantics, based on an
intensional view of functions, where different descriptions –in the form of HO-
patterns– of the same extensional function are distinguished as different data.
This allows expressive programs and is simpler than λ-calculus-based HO unifica-
tion, which is an alternative approach followed in the logic programming setting
[23]. Previous work on the intensional view of HO-FLP [10] did not consider non-
determinism. Other works covering HO in FLP, [24,15], consider orthogonal or
inductively sequential (henceforth deterministic) systems; if extended directly to
the non-deterministic case, they would realize run-time choice, as happens also
with [4], where a type-based translation to FO in the spirit of [29,9] is proposed.
We remark also that [15] is close to the theory of HO rewriting [27], and there-
fore has η-expansion as a valid procedure, against the expected properties of the
languages considered by ours. Finally, [1] copes with call-time choice but their
approach to HO is again based on a FO-translation, in contrast to ours.

A weak point of the original (HO)CRWL-way to FLP is that it does not come
with a clear, simple notion of one-step reduction similar to one-step rewriting.
In [19] we proposed let-rewriting, a notion of rewriting with local bindings ade-
quate to FO CRWL semantics, and at the same time simpler and more abstract
than other reduction notions based on term graph rewriting [26,6] or natural
operational semantics [1]. Let -rewriting was generalized to let -narrowing in [18].

1 As far as we know, it was the first time that this behavior was noticed.
2 Although the addition of primitive functions not definable in the language like seq

in Haskell [25] can also destroy extensionality.
3 CRWL stands for Constructor Based Rewriting Logic.

Rewriting and Call-Time Choice: The HO Case 149

Our aim in this work is to extend the notion of let -rewriting/narrowing to the
HO case. We address various foundational aspects –definition of HOlet -rewriting
and equivalence wrt the declarative semantics given by HOCRWL (Sect. 3),
HOlet -narrowing and its soundness and completeness wrt HOlet -rewriting
(Sect. 4)– and also more applied aspects, as are the use of our framework to
language development (Sect. 5) or the proof of correctness within our frame-
work of a scheme of translation to FO, the basis of a standard approach [29,9,4]
to the implementation of HO stuff in FO settings.

There are still some other important issues –evaluation strategies (including
concurrency), types, constraints– that have been left out of the scope of the
paper. Finally, we are not inventing HO FLP, but only contributing to some
aspects of its foundation. Therefore it is not our aim in this paper convincing
of the practical interest of HO FLP: other documents [16,28,7,4] contain enough
evidences of that. Omitted proofs can be found in [20].

2 Preliminaries: HOCRWL

We present here some basic notions and new results about HOCRWL [7].

2.1 Expressions, Patterns and Programs

We consider function symbols f, g, . . . ∈ FS, constructor symbols c, d, . . . ∈ CS,
and variables X, Y, . . . ∈ V ; each h ∈ FS∪CS has an associated arity, ar(h) ∈ N;
FSn (resp. CSn) is the set of function (resp. constructor) symbols with arity
n. The notation o stands for tuples of any kind of syntactic objects o. The
set of applicative expressions is defined by Exp � e ::= X | h | (e1 e2) . As
usual, application is left associative and outer parentheses can be omitted, so
that e1 e2 . . . en stands for ((. . . (e1 e2) . . .) en). The set of variables occurring
in e is written by var(e). A distinguished set of expressions is that of patterns
t, s ∈ Pat, defined by: t ::= X | c t1 . . . tn | f t1 . . . tm, where 0 ≤ n ≤ ar(c), 0 ≤
m < ar(f). Patterns are irreducible expressions playing the role of values. FO-
patterns, defined by FOPat � t ::= X | c t1 . . . tn (n = ar(c)), correspond to
FO constructor terms, representing ordinary non-functional data-values. Partial
applications of symbols h ∈ FS∪CS to other patterns are HO-patterns and can
be seen as truly data-values representing functions from an intensional point of
view. Examples of patterns with the signature of Ex. 1 are: 0, s X, s, f ’, fadd f’
f ’. The last three are HO-patterns. Notice that f, fadd f f are not patterns since
f is not a pattern (ar(f) = 0).

Expressions X e1 . . . em (m ≥ 0) are called flexible (variable application when
m > 0). Rigid expressions have the form h e1 . . . em; moreover, they are junk if
h ∈ CSn and m > n, active if h ∈ FSn and m ≥ n, and passive otherwise.

Contexts are expressions with a hole defined as Cntxt � C ::= [] | C e | e C.
Application of C to e (written C[e]) is defined by [][e] = e ; (C e′)[e] =
C[e] e′ ; (e′ C)[e] = e′ C[e]. Substitutions θ ∈ Subst are finite mappings from
variables to expressions; [Xi/ei, . . . , Xn/en] is the substitution which assigns
ei ∈ Exp to the corresponding Xi ∈ V . We will mostly use pattern-substitutions

150 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

PSubst = {θ ∈ Subst | θ(X) ∈ Pat, ∀X ∈ V}. We write ε for the identity
substitution, dom(θ) for the domain of θ, and vRan(θ) =

⋃
X∈dom(θ) var(Xθ).

As usual while describing semantics of non-strict languages, we enlarge the
signature with a new 0-ary constructor symbol ⊥, which can be used to build the
sets Expr⊥, Pat⊥, PSubst⊥ of partial expressions, patterns and p-substitutions
resp. Partial expressions are ordered by the approximation ordering 	 defined
as the least partial ordering satisfying ⊥	 e and e 	 e′ ⇒ C[e] 	 C[e′] for all
e, e′ ∈ Exp⊥, C ∈ Cntxt . This partial ordering can be extended to substitutions:
given θ, σ ∈ Subst⊥ we say θ 	 σ if Xθ 	 Xσ for all X ∈ V .

A HOCRWL-program (or simply a program) consists of one or more program
rules for each f ∈ FSn, having the form f t1 . . . tn → r where (t1, . . . , tn) is
a linear (i.e. variables occur only once) tuple of (maybe HO) patterns and r is
any expression. Notice that confluence or termination is not required, and that
r may have variables not occurring in f t1 . . . tn (we write vExtra(R) for such
variables in a rule R). The original HOCRWL logic considered also joinability
conditions in rules to achieve a better treatment of strict equality as built-in,
which is a subject orthogonal to the aims of this paper. Therefore, we consider
only unconditional rules.

Some related languages, like Curry, do not allow HO-patterns in left-hand
sides of function definitions. We remark that all the notions and results in the
paper are applicable to programs with this restriction and we stress the fact that
Example 1 is one of them.

Given a program P , the set of its rule instances is [P] = {(l → r)θ | (l → r) ∈
P , θ ∈ PSubst}. The set [P]⊥ is defined similarly replacing PSubst by PSubst⊥.
To require θ ∈ PSubst(⊥) instead of θ ∈ Subst(⊥) is essential to achieve call-time
choice in the next sections.

2.2 The HOCRWL Proof Calculus [7]

The semantics of a program P is determined in HOCRWL by means of a proof
calculus able to derive reduction statements of the form e � t, with e ∈ Exp⊥
and t ∈ Pat⊥, meaning informally that t is (or approximates to) a possible value
of e, obtained by evaluation of e using P under call-time choice. Besides this log-
ical semantics, HOCRWL programs come in [7] with a model-theoretic semantics
based on applicative algebras, with existence of a least Herbrand model. We will
not use this aspect of the semantics here.

The HOCRWL-proof calculus is presented in Fig. 1. We write P �HOCRWL

e � t to express that e � t is derivable in that calculus using the program P .
The HOCRWL-denotation of an expression e ∈ Exp⊥ is defined as [[e]]PHOCRWL =
{t ∈ Pat⊥ | P �HOCRWL e � t}. P and HOCRWL are frequently omitted in
those notations.

In Example 1 we have [[fdouble f 0]] = {0, s (s 0),⊥, s ⊥, s (s ⊥)} and
[[fdouble f ′ 0]] = {0, s 0, s (s 0),⊥, s ⊥, s (s ⊥)}.

We will use the following (new) result stating an important compositionality
property of the semantics of HOCRWL-expressions: the semantics of a whole ex-
pression depends only on the semantics of its constituents, in a particular form

Rewriting and Call-Time Choice: The HO Case 151

(B)
e � ⊥ (RR)

x � x
x ∈ V

(DC)
e1 � t1 . . . en � tm

h e1 . . . em � h t1 . . . tm
h ∈ Σ, if h t1 . . . tm is a partial pattern, m ≥ 0

(OR)
e1 � t1 . . . en � tn r a1 . . . am � t

f e1 . . . en a1 . . . am � t
if m ≥ 0, (f t1 . . . tn → r) ∈ [P]⊥

Fig. 1. (HOCRWL-calculus)

reflecting the idea of call-time choice. The second part of the theorem is a technical
result, needed in some proofs, concerning the size of the involved derivations.

Theorem 1 (Compositionality of HOCRWL semantics)

(i) [[C[e]]] =
⋃

t∈[[e]][[C[t]]], for any program P and expression e ∈ Exp⊥.
In other terms, C[e] � t⇔ ∃s.(e � s ∧ C[s] � t).

(ii) In the (⇒) part of (i), if t �=⊥, C �= [] and the derivation of C[e] � t has
size K, then the derivations of e � s and C[s] � t can be chosen with sizes
< K and ≤ K respectively.

3 Higher Order let-rewriting

To express sharing, as is required for call-time choice, we enhance the syntax of
expressions (and contexts) with a let construct for local bindings, in the spirit
of [5,22,19]: LExp � e ::= X | h | e1 e2 | let X = e1 in e2

Cntxt � C ::= [] | C e | e C | let X = C in e | let X = e in C
We consider expressions let X = e1 in e2 as passive and rigid. The sets FV (e)
and BV (e) of free and bound variables resp. of a let -expression e are defined as:

FV (X) = {X}; FV (h e) =
⋃

ei∈e FV (ei);
FV (let X = e1 in e2) = FV (e1) ∪ (FV (e2)\{X});
BV (X) = ∅; BV (h(e)) =

⋃
ei∈e BV (ei);

BV (let X = e1 in e2) = BV (e1) ∪BV (e2) ∪ {X}
Notice that with the given definition of FV (let X = e1 in e2) recursive let-
bindings are not allowed since the possible occurrences of X in e1 are not con-
sidered as bound and therefore refer to a ‘different’ X . We assume appropriate
renamings of bound variables ensuring that bound and free variables are kept dis-
tinct, and that whenever θ is applied to e ∈ LExp, BV (e)∩(dom(θ)∪vRan(θ)) =
∅, so that (let X = e1 in e2)θ = let X = e1θ in e2θ and (C[e])θ = Cθ[eθ].

The shell of an expression, written as |e|, is a pattern containing the ‘stable’
outer information of e, not to be destroyed by reduction:

|X e1 . . . em| =
{

X if m = 0
⊥ if m > 0

152 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

|h e1 . . . em| =
{

h |e1| . . . |em| if (h ∈ CSn, m ≤ n) or (h ∈ FSn, m < n)
⊥ otherwise (junk or active expression)

|(let X = e1 in e2) a1 . . . am| = |(e2[X/e1]) a1 . . . am|
Notice that in FO [19] we defined |(let X = e1 in e2)| = |e2|[X/|e1|]. This

would lose information in the HO case: for instance, |let X = s in X 0| would
be ⊥, instead of the more accurate s 0 given by the definition above.

The HOCRWLlet proof calculus for proving statements e � t (e ∈ LExp⊥, t ∈
Pat⊥) results from adding to Fig. 1 the rule:

(Let)
e1 � t1 (e2[X/t1]) a1 . . . am � t
(let X = e1 in e2) a1 . . . am � t

(m ≥ 0)

It is easy to see that for programs and expressions without lets both calculi
coincide, giving [[e]]HOCRWL = [[e]]HOCRWLlet

, and then we write simply [[e]].
Theorem 1 does not hold as it is for let -expressions (assume, for instance, the

program rule f 0 = 1 and take e ≡ f X, C ≡ let X=0 in []). However, a more
limited form of compositionality will suffice to our needs:

Theorem 2 (Weak compositionality of HOCRWLlet semantics)
For any P and e, e′ ∈ LExp⊥: [[C [e]]] =

⋃
t∈[[e]][[C [t]]], if BV (C) ∩ FV (e) = ∅.

As a consequence, (i) [[e e′]] =
⋃

t∈[[e]][[t e′]] (ii) [[e e′]] =
⋃

t∈[[e′]][[e t]]

(iii) [[let X = e in e′]] =
⋃

t∈[[e]][[e
′[X/t]]]

3.1 Rewriting with Local Bindings

Figure 2 defines the HOlet -rewriting relation →l. Rule (Fapp) uses a program
rule to reduce a function application, but only when the arguments are already
patterns, otherwise call-time choice would be violated. Non-pattern arguments
of applications are moved to local bindings by (LetIn). Local bindings of pat-
terns to variables are applied in (Bind), since in this case copying is harmless.
(Elim) erases useless bindings. (Flat) and (LetAp) manage local bindings; they
are needed to avoid some reductions to get stuck. Notice that with the vari-
able convention, the condition Y �∈ FV (e3) in (Flat) and (LetAp) would not be
needed; we have written it in order to keep the rules independent of the conven-
tion. Finally, any of these rules can be applied to any subexpression by (Contx).
It includes an additional technical condition to avoid undesired variable captures
when (Fapp) was applied inside a surrounding context and the used program rule
has extra variables. If, for instance, a program rule is f → Y, the rule (Contxt)
avoids the step let X=0 in f →l let X=0 in X and also the step let X=f in X
→l let X=X in X.

The following derivation corresponds to Example 1:

fdouble f 0 →l{LetIn,Cntx} (let F=f in fdouble F) 0
→l

LetAp let F=f in fdouble F 0 →l{Fapp,Cntx} let F=f in fadd F F 0
→l{Fapp,Cntx} let F=f in F 0 + F 0
→l{Fapp,Cntx} let F=g in F 0 + F 0 →l

Bind g 0 + g 0 →l∗ 0

Rewriting and Call-Time Choice: The HO Case 153

(Fapp) f t1 . . . tn →l r, if (f t1 . . . tn → r) ∈ [P]

(LetIn) e1 e2→llet X = e2 in e1 X (X fresh), if e2 is an active expression,
variable application, junk or let rooted expression.

(Bind) let X = t in e →l e[X/t], if t ∈ Pat

(Elim) let X = e1 in e2→le2, if X �∈ FV (e2)

(Flat) let X = (let Y = e1 in e2) in e3 →l let Y = e1 in (let X = e2 in e3)
if Y �∈ FV (e3)

(LetAp) (let X = e1 in e2) e3→llet X = e1 in e2 e3, if X �∈ FV (e3)

(Contx) C[e]→lC[e′], if C �= [], e→le′ using any of the previous rules, and in case
e→le′ is a (Fapp) step using (f p → r)θ ∈ [P] then vRan(θ|\var(p))∩BV (C) = ∅.

Fig. 2. Higher order let-rewriting relation →l

Notice that the fist step is justified because f is active. In contrast, since f ′ is a
pattern, a derivation for fdouble f ’ 0 could proceed as follows:

fdouble f ’ 0→l fadd f’ f ’ 0→l f ’ 0 + f’ 0 →l∗ f 0 + f 0 →l∗ g 0 + h 0 →l∗ s 0

The rules of →l have been carefully tuned up to ensure that program rules are
the only possible source of non-termination, as ensured by the following result.

Proposition 1. The relation →l\Fapp defined by the rules of Fig. 2 except
(Fapp) is terminating.

This is a natural requirement. However, at some point we will find useful to
consider the more liberal relation →L obtained replacing (LetIn) by:

(LetIn’) e1 e2 →L let X = e2 in e1 X (X fresh)

which is less restrictive (then →l ⊆ →L). However →L\Fapp becomes non-
terminating, as shown by: s 0 →l

LetIn′ let X = 0 in s X →l
Bind s 0 →l . . .

3.2 Adequacy of HOlet-rewriting to HOCRWL

We compare here →l to HOCRWL-derivability �, proving that essentially →l

gives no more (soundness) and no less (completeness) results than �.
As in [19], the following notion is useful to establish soundness:

Definition 1 (Hypersemantics)

(i) The hypersemantics of an expression e ∈ LExp⊥, written as [[[e]]], is a map-
ping [[[e]]] : PSubst⊥ −→ P(Pat⊥) defined by [[[e]]](θ) = [[eθ]].

(ii) Hypersemantics of expressions are ordered as follows:

[[[e1]]] � [[[e2]]] iff [[e1θ]] ⊆ [[e2θ]], ∀θ ∈ PSubst⊥

The main reason for introducing hypersemantics is that it enjoys the following
nice monotonicity-under-contexts property, while [[]] does not:

154 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

Lemma 1 (Monotonicity of hypersemantics)
[[[e]]] � [[[e′]]] implies [[[C[e]]]] � [[[C[e′]]]], for any e, e′ ∈ LExp⊥, C ∈ Cntxt.

Monotonicity under contexts is the key for our next result, stating that hyper-
semantics does not grow under HOlet -rewriting steps:

Lemma 2 (One-Step Hyper-Soundness of HOlet-rewriting)
e→le′ implies [[[e′]]] � [[[e]]], for any e, e′ ∈ LExp.

Notice that � cannot be replaced here by =, due to non-determinism.
Lemma 2, together with the easy observation that [[[e1]]] � [[[e2]]] implies [[e1]] ⊆

[[e2]] (just take θ = ε) and an obvious induction over derivation lengths, leads to
our main correctness result for →l:

Theorem 3 (Soundness of HOlet-rewriting). Let P be a program, e, e′ ∈
LExp. Then: (i) e→l∗e′ implies [[e′]] ⊆ [[e]], and therefore e � |e′|

(ii) e→l∗t implies e � t, for any t ∈ Pat.

The proof of this result can be easily extended to the larger relation →L (the
one which uses (LetIn’) instead of (LetIn)).

Regarding completeness of let-rewriting, a key in the FO case was the peeling
lemma ([19], Lemma 7), a technical result giving a kind of standard form in
which the implicit or explicit sharing information contained in e ∈ Exp can be
expressed. It is not obvious how to proceed in the HO case, since straightforward
generalizations of the FO peeling lemma turn out to be false. However, we have
found that the following weak HO version is enough for our purposes:

Lemma 3 (Weak peeling lemma). Let h e1 . . . em ∈ Exp with h ∈ Σn (n
and m can be different). Then h e1 . . . em→l∗let X = a in h t1 . . . tm, for some
t1, . . . , tm ∈ Pat, a ⊆ Exp such that |a| = ⊥, ti ≡ ei for every ei ∈ Pat. Besides,
in this derivation the rule (Fapp) is not applied.

With this result and some monotonicity properties of HOCRWL-derivability, we
can prove a very technical but strong completeness result for →l wrt �:

Lemma 4 (Completeness lemma for HOlet-rewriting). For any program
P, e ∈ Exp and t ∈ Pat⊥ with t �=⊥, the following holds: P �HOCRWL e � t
implies e→l∗let X = a in t′, for some t′ ∈ Pat and a ⊆ Exp in such a way that
t 	 |let X = a in t′| and |ai| =⊥ for all ai ∈ a. As a consequence, t 	 t′[X/ ⊥].

The condition t �=⊥ is needed, as can be seen just taking P = {f → f}, e ≡ f
and t ≡⊥.

From Lemma 4 we can obtain our main completeness result for →l:

Theorem 4 (Completeness of HOlet-rewriting). Let P be a program, e ∈
Exp, and t ∈ Pat⊥. Then:

(i) P �HOCRWL e � t implies e→l∗e′, for some e′ ∈ LExp such that t 	 |e′|.
(ii) If in addition t ∈ Pat, then e→l∗t.

Joining together the last parts of Theorems 3 and 4, we obtain a strong equiva-
lence result for →l and �:

Rewriting and Call-Time Choice: The HO Case 155

Theorem 5 (Equivalence of HOlet-rewriting and HOCRWL)
P �HOCRWL e � t iff e→l∗t, for any P, e ∈ Exp, and t ∈ Pat.

This justifies our claim that →l is truly the reduction face of HOCRWL-
semantics.

4 Higher Order let-narrowing

For some FLP computations rewriting is not enough, and must be lifted to some
kind of narrowing; this happens when the expression being reduced contains
variables for which different bindings might produce different evaluation results.
Narrowing is an old subject in the fields of theorem proving and declarative
programming. Since classical rewriting is not correct for call-time choice, classical
narrowing cannot be either (because rewriting is a particular case of narrowing).
In [18] we proposed a notion of narrowing adequate to FO let -rewriting, and now
we extend it to HO. As happens in [7,4], HOlet -narrowing may bind variables
to HO-patterns.

Figure 3 contains the rules for the one-step HOlet -narrowing relation e�l
θ e′,

expressing that e is narrowed to e′ producing the substitution θ ∈ PSubst. In
(X) we collect those cases of HOlet -rewriting corresponding also to narrowing
steps with empty substitution. (Narr) is the proper rule of narrowing for func-
tion application; it may produce HO bindings if the used program rule has HO
patterns. Notice that, for the sake of generality, we do not require that θ is a
mgu. (VAct) and (VBind) are rules producing HO bindings for flexible expres-
sions (or subexpressions, in the case of (VBind)). We have preferred this pair of
rules instead of the rule

(VNarr) X e�L
[X/t]t (e[X/t]), for any t ∈ Pat

which is simpler, but also ‘wilder’ because it creates a larger search space. Finally,
(Contxt) is a contextual rule where, as in [18], it is crucial to protect bound
variables from narrowing (condition (i)) and to avoid variable capture (condition
(ii), automatically fulfilled if mgu’s are used in (Narr) and (VAct), and fresh
shallow patterns –i.e., of the form h X1 . . . Xn– in (VBind)).

Taking Example 1, a narrowing derivation for fdouble F 0 would start with
some (X) ‘rewriting’ steps:

fdouble F 0 �l
ε fadd F F 0 �l

ε F 0 + F 0 �l
ε let X=F 0 in X + F 0

At this point, notice first that we cannot narrow on X , because it is a bound
variable. Instead, we can apply (VAct+Contx):

let X=F 0 in X + F 0 �l{F/g} let X=0 in X + g 0 �l∗
ε 0

Other similar derivations using (VAct+Contx) would bind F to h (with final
result s (s 0)), or to f ′ (with possible results 0, s 0, s (s 0)). Notice that the
binding X/f is not legal, since f is not a pattern.

156 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

(X) e�l
εe

′ if e →le′ using X∈ {Elim, Bind, F lat, LetIn,LetAp} in Figure 2.

(Narr) f t �l
θ rθ, for any fresh variant (f p → r) ∈ P and θ ∈ PSubst such

that f tθ ≡ f pθ.

(VAct) X t1 . . . tk �l
θ rθ, if k > 0, for any fresh variant (f p → r) ∈ P and

θ ∈ PSubst such that (X t1 . . . tk)θ ≡ f pθ.

(VBind) let X = e1 in e2�l
θ e2θ[X/e1θ], if e1 �∈ Pat, for any θ ∈ PSubst that

makes e1θ ∈ Pat, provided that X �∈ (dom(θ) ∪ vRan(θ)).

(Contx) C[e]�l
θCθ[e′] for C �= [], if e�l

θe
′ by any of the previous rules, and the

following conditions hold:
i) dom(θ) ∩ BV (C) = ∅
ii) • If the step is (Narr) or (VAct) using (f p → r) ∈ P , then

vRan(θ|\var(p)) ∩ BV (C) = ∅
• If the step is (VBind) then vRan(θ) ∩ BV (C) = ∅

Fig. 3. Higher order let-narrowing calculus �l

Alternatively we could have applied (VBind), obtaining:

let X=F 0 in X + F 0 �l{F/s} s 0 + s 0 �l∗
ε s (s 0)

We remark that, in our untyped framework, other ‘ill-typed’ bindings could be
tried, like F/fadd 0 or F/fdouble. This is a symptom of known problems [4,8]
of the interaction with types of the intensional view of HO, that are partially
alleviated in [4] by a typed version of a FO translation (see Sect. 6), but in
general require (see [8]) bringing types to computations, a problem yet not well
solved in practice. All these type-related issues are out of the scope of the paper.

A basic fact about completeness of let -narrowing in the FO case was that
e�l∗

θ e′ implied eθ→l∗e′, ∀θ ∈ CSubst, which is closely related to the fact that
FO let -rewriting is closed under c-substitutions. None of both facts hold with
HO �l, →l and θ ∈ PSubst: consider for instance e ≡ s (Y 0)→l let X =
Y 0 in s X ≡ e′ and θ = [Y/s], for which eθ ≡ s (s 0) �

l let X = s 0 in s X ≡
e′θ. Similarly, we have e ≡ s (Y 0)�L

ε let X = Y 0 in s X�L
[Y/s] let X =

s 0 in s X ≡ e′, but eθ ≡ s (s 0) �
l e′.

At this point the relation →L of Sect. 3 becomes useful, because we have:

Lemma 5 (Closedness of →L under PSubst). For every e, e′ ∈ LExp, θ ∈
PSubst, e→L∗

e′ implies eθ→L∗
e′θ.

Now we can prove soundness of HO let-narrowing wrt. →L:

Theorem 6 (Soundness or �l wrt →L). For any e, e′ ∈ LExp, e�l∗
θ e′

implies eθ→L∗
e′.

And now, taking into account Th. 3 (which holds also for →L), we get:

Theorem 7 (Soundness of let-narrowing). For any e, e′ ∈ LExp, t ∈ Pat:

a) If e�l∗
θ e′ then [[e′]] ⊆ [[eθ]] b) If e�l∗

θ t then eθ→l∗t

Rewriting and Call-Time Choice: The HO Case 157

Regarding completeness, the following lemma shows how we can lift any →l

derivation to a �l derivation. This is surely the most involved result in the
paper.

Lemma 6 (Lifting lemma for HOlet-rewriting). Let e, e′ ∈ LExp such that
eθ→l∗e′ for some θ ∈ PSubst, and let W ,B ⊆ V with dom(θ) ∪ FV (e) ⊆ W,
BV (e) ⊆ B and (dom(θ)∪vRan(θ))∩B = ∅, and for each instance of a program
rule Rγ ∈ [P] used in an (Fapp) step of eθ→l∗e′ then vRan(γ|vExtra(R))∩B = ∅.
Then there exist a derivation e�l∗

σe′′ and θ′ ∈ PSubst such that:

(i) e′′θ′ = e′ (ii) σθ′ = θ[W] (iii) (dom(θ′) ∪ vRan(θ′)) ∩ B = ∅
Besides, the HOlet-narrowing derivation can be chosen to usemgu’s at each (Narr)
or (VAct) step, and fresh shallow patterns in the range for each (VBind) step.
Graphically:

With the aid of this lemma we can reach our completeness result for �l:

Theorem 8 (Completeness of HOlet-narrowing wrt. HOlet-rewriting).
Let e, e′ ∈ LExp and θ ∈ PSubst. If eθ→l∗e′, then there exist a HOlet-narrowing
derivation e�l∗

σe′′ and θ′ ∈ PSubst such that e′′θ′ ≡ e′ and σθ′ = θ[FV (e)].

5 A Case of Study: Correctness of Bubbling

Having equivalent notions of semantics and reduction allows to reason inter-
changeably at the rewriting and the semantic levels. We demonstrate the power
of such technique by a case study where let-rewriting provides a good level of
abstraction to formulate a new operational rule (bubbling), while the semantic
point of view is appropriate for proving its correctness.

Bubbling, proposed in [3], is an operational rule devised to improve the effi-
ciency of functional logic computations. Its correctness was formally studied in
[2] in the framework of a variant [6] of term graph rewriting.

The idea of bubbling is to concentrate all non-determinism of a system into a
choice operation ? defined by the rules X ? Y → X and X ? Y → Y, and to
lift applications of ? out of a surrounding context, as illustrated by the following
graph transformation taken from [2]:

158 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

As it is shown in [3], bubbling can be implemented in such a way that many
functional logic programs become more efficient, but we will not deal with these
issues here.

Due to the technical particularities of term graph rewriting, not only the
proof of correctness, but even the definition of bubbling in [3,2] are involved
and need subtle care concerning the appropriate contexts over which choices
can be bubbled. In contrast, bubbling can be expressed within our framework
(moreover, generalized to HO) in a remarkably easy and abstract way as a new
rewriting rule: (Bub) C[e1?e2]→bub C[e1]?C[e2], for e1, e2 ∈ LExp

With this rule, the bubbling step corresponding to the graph transformation
of the example above is: let X = true ? false in c (not X) (not X) →bub

let X = true in c (not X) (not X) ? let X = false in c (not X) (not X)
Notice that the effect of this bubbling step is not a shortening of any existing

HOlet -rewriting derivation; bubbling is indeed a genuine new rule, the correct-
ness of which must be therefore subject of proof. Call-time choice is essential,
since bubbling is not correct with respect to run-time choice: in Example 1,
fdouble (g?h) 0 can be reduced with run-time choice to 0, 1 or 2, while fdouble
g 0 ? fdouble h 0 leads only to 0 and 2.

The fact that bubbling preserves HOCRWLlet-semantics has a simple formu-
lation:

Theorem 9 (Correctness of bubbling). If e →bub e′, then [[C[e]]] = [[C[e′]]].
In other terms, [[C[e1?e2]]] = [[C[e1]?C[e2]]] (= [[C[e1]]] ∪ [[C[e2]]]), for any e1, e2 ∈
LExp and context C.
From this and the equivalence results of Sect. 3 we obtain as immediate corollary
the correctness of bubbling in terms of rewriting:

Corollary 1. e→∗
l t⇔ e (→l ∪ →bub)∗ t

It is interesting to observe that most of the proof of Th. 9 consists of direct
calculations with denotation of expressions, in the form of chains of equalities of
denotations, justified by general properties of the semantics like Th. 1. We find
this methodology quite appealing and for this reason we include (a part of) the
proof.

Proof (For Theorem 9, Correctness of bubbling). The proof uses the following
easy (not proved here) lemma about semantics of ?, which justifies also the
equation [[C[e1]?C[e2]]] = [[C[e1]]] ∪ [[C[e2]]] stated in the Theor. 9.

Lemma 7. [[e1?e2]] = [[e1]] ∪ [[e2]], for any e1, e2 ∈ LExp⊥.

Now, we reason by induction on the number k of let ’s occurring in C[e1?e2].
• k = 0: Since there is no let in e1?e2, we can apply Theor. 1 to obtain:

[[C[e1?e2]]] = (by Theor. 1)⋃
t∈[[e1?e2]][[C[t]]] = (by Lemma 7)⋃
t∈([[C[e1]]] ∪ [[C[e2]]])

[[C[t]]] = (set operations)⋃
t∈[[C[e1]]]

[[C[t]]] ∪ ⋃
t∈[[C[e2]]]

[[C[t]]] = (by Theor. 1)
[[C[e1]]] ∪ [[C[e2]]] = (by Lemma 7)
[[C[e1] ? C[e2]]]

Rewriting and Call-Time Choice: The HO Case 159

• k > 0: We reason by induction on the structure of C. The most interesting
case is that of let bindings:
– C ≡ let x = e in C′: then

[[C[e1?e2]]] =
[[let x=e in C′[e1?e2]]] = (by Theor. 2,σ ≡ {x/t})⋃

t∈[[e]][[C′[e1?e2]σ]] =⋃
t∈[[e]][[C′σ[e1σ?e2σ]]] = (by IH on k, that decreases)⋃
t∈[[e]][[C′σ[e1σ]?C′σ[e2σ]]] = (by Lemma 7)⋃
t∈[[e]]([[C′σ[e1σ]]] ∪ [[C′σ[e2σ]]]) = (set operations)⋃
t∈[[e]][[C′σ[e1σ]]] ∪ ⋃

t∈[[e]][[C′σ[e2σ]]] = (by Theor. 2)
[[let x=e in C′[e1]]] ∪ [[let x=e in C′[e2]]] =
[[C[e1]]] ∪ [[C[e2]]] = (by Lemma 7)
[[C[e1] ? C[e2]]]

6 Translation to First Order

Since [29], a common technique to implement HO features in FO settings consists
in a HO-to-FO translation introducing data constructors to represent partial
applications and a special function @ (read apply) for reducing application of
such constructors. This has been used within the context of FLP in [9,4]. Here we
adapt such a transformation to our context and provide a correctness proof with
respect to the semantics of the source and object programs, given by HOCRWL
and CRWL [11,19] respectively.

Definition 2 (First order translation). Given a HOCRWL-program P =
{f p1 → e1, . . . , f pm → em} built up over the signature Σ = FS ∪ CS, its
first order translation Pfo will be defined over the extended signature Σfo =
FSfo ∪ CSfo where:

FSfo =FS∪{@}; CSfo =
⋃

c∈CSn,n∈N
{c0, . . . , cn} ∪

⋃
f∈FSn,n∈N

{f0, . . . , fn−1}

being @ a new function symbol of arity 2 and c0, . . . , cn, f0, . . . , fn−1 new symbols
(with arities indicated by the sub-index). The set P@ of @−rules is defined as:

@(ck(X1, . . . , Xk), Y) = ck+1(X1, . . . , Xk, Y), for each c ∈ DCn, k < n
@(fk(X1, . . . , Xk), Y) = fk+1(X1, . . . , Xk, Y), for each f ∈FSn, k + 1<n
@(fn−1(X1, . . . , Xn−1), Y) = f(X1, . . . , Xn−1, Y), for each f ∈ FSn

The transforming function fo : ExpΣ,⊥ → ExpΣfo ,⊥ is defined as:

fo(⊥) = ⊥ fo(X) = X fo(h) = h0, if h ∈ CS or h ∈ FSn, n > 0
fo(f) = f, if f ∈ FS0 fo(e1 e2) = @(fo(e1), fo(e2))

The transformed program is defined as Pfo = {f(fo(p1)↓@) → fo(e1) ↓@,

. . . , f(fo(pm)↓@)→ fo(em)↓@}∪P@, where e↓@ stands for a normal form for
e with respect to @−rules defined above.

160 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

The program rules obtained by the transformation are well defined: it is easy to
prove that if p is a pattern then fo(p)↓@ is a FO constructor term.

For the program of Example 1 we have FSfo = {+, f , g, h, f ′, fadd , fdouble, @}
and CSfo = {0, s0, s, +0, +1, g0, h0, f ′0, fadd0, fadd1, fadd 2, fdouble0}. The trans-
lated rules are:

g(X)→ 0 f → g0 f → h0 f ′(X)→ @(f, X) h(X)→ s(0)
fadd(F, G, X)→ @(F, X) + @(G, X) fdouble(F)→ fadd2(F, F)

And the rules for @ are:

@(+0, X)→ +1(X) @(s0, X)→ s(X) @(h0, X)→ h(X)
@(+1(X), Y)→ X + Y @(g0, X)→ g(X) @(f ′

0, X)→ f ′(X)
@(fadd0, F)→ fadd1(F) @(fadd2(F, G), X)→ fadd(F, G, X)
@(fadd1(F), G)→ fadd 2(F, G) @(fdouble0, F)→ fdouble(F)

The translation of the expressions to reduce in that example are:
fo(fdouble f 0)↓@= @(fdouble(f), 0) fo(fdouble f ′ 0)↓@= @(fdouble(f ′

0), 0)
In general we cannot expect to prove a statement of the form fo(e) � fo(t)

because fo(t) can contain calls to the function @, i.e. fo(t) might not be a FO
constructor term. But the same statement makes sense in the form fo(e) �

fo(t)↓@ because fo(t)↓@ is a FO constructor term.

Proposition 2. [[fo(e)↓@]]PCRWL =[[fo(e)]]PCRWL. Moreover [[fo(e)]]= [[e′]] where
e′ is any expression obtained from e by reducing some calls of @.

According to this, when proving a statement fo(e) � t we can use any equiv-
alent expression e′ (in the sense of previous lemma) in the left hand side and
prove e′�t.

The correctness of the transformation can be stated then as follows:

Theorem 10 (Adequacy of HO-to-FO translation). Let P be a program,
e ∈ Exp⊥, t ∈ Pat⊥. Then: P �HOCRWL e � t⇔ Pfo �CRWL fo(e) � fo(t)↓@
Or, in terms of HOlet-rewriting: e→l∗t⇔ fo(e)→l∗fo(t)↓@.

7 Conclusions

Our paper addresses the broad question: what means ‘reduction’ for functional
logic programming?, which had no previous satisfactory answer for the combina-
tion HO + non-deterministic functions + call-time choice supported by current
systems in the mainstream of the field (Curry [16], Toy [21]). This leads to subtle
behaviors well characterized from the point of view of a declarative semantics
[7], but with no corresponding basic notion of one-step reduction. We have made
a number of identifiable contributions in this sense:

• We propose a notion of rewriting with local bindings (HOlet-rewriting)
suitable for a large class of HO systems (possibly non-confluent and
non-terminating, allowing extra variables in right-hand sides and HO-
patterns in left-hand sides).

Rewriting and Call-Time Choice: The HO Case 161

• We have proved equivalence of HOlet -rewriting wrt to HOCRWL [7] declar-
ative semantics. Along the way we have extended HOCRWL to cope with
lets, and established new compositional properties of HOCRWL semantics.
• We have lifted HOlet -rewriting to a notion of HOlet-narrowing which is

able to bind variables to patterns, even HO ones representing intensional
descriptions of functions. We prove soundness and completeness of HOlet -
narrowing wrt. HOlet -rewriting.
• We have recast within our framework the definition and proof of correctness

of bubbling, an operational rule investigated in [3,2] using term graph rewrit-
ing techniques. Apart from extending it to HO, this case study illustrates
quite well the power of using indistinctly rewriting and/or semantic-based
reasoning.
• To close the panorama, we have formally proved that translation from HO

to FO, a technique actually used in the implementations of FLP systems,
still works properly when let -bindings with call-time choice are considered,
while previous works [9,4] consider only deterministic functions.

The first three points have been conceived as an extension to HO of our
previous work on the FO case [19,18]. However, adapting it has not been routine;
on the contrary, some results have been indeed a technical challenge.

Our wish with this work, jointly with [19,18], is to have provided founda-
tional pieces useful to understand how a FLP computation proceeds, serving
also as suitable technical basis to address in the call-time choice context other
operational issues (rewriting and narrowing strategies, residuation, program op-
timization, types in computations,. . .), all of which are lines of future work.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. of Symb. Comp. 40(1), 795–829 (2005)

2. Antoy, S., Brown, D., Chiang, S.: On the correctness of bubbling. In: Pfenning, F.
(ed.) RTA 2006. LNCS, vol. 4098, pp. 35–49. Springer, Heidelberg (2006)

3. Antoy, S., Brown, D., Chiang, S.: Lazy context cloning for non-deterministic graph
rewriting. In: Proc. Termgraph 2006. ENTCS, vol. 176(1), pp. 61–70 (2007)

4. Antoy, S., Tolmach, A.P.: Typed higher-order narrowing without higher-order
strategies. In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 335–353.
Springer, Heidelberg (1999)

5. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: Proc. POPL 1995, pp. 233–246 (1995)

6. Echahed, R., Janodet, J.-C.: Admissible graph rewriting and narrowing. In: Proc.
JICSLP 1998, pp. 325–340. MIT Press, Cambridge (1998)

7. González-Moreno, J., Hortalá-González, M., Rodŕıguez-Artalejo, M.: A higher or-
der rewriting logic for functional logic programming. In: Proc. ICLP 1997, pp.
153–167. MIT Press, Cambridge (1997)

8. González-Moreno, J., Hortalá-González, T., Rodŕıguez-Artalejo, M.: Polymorphic
types in functional logic programming. J. of Functional and Logic Program-
ming 2001/S01, 1–71 (2001)

162 F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández

9. González-Moreno, J.C.: A correctness proof for warren’s ho into fo translation. In:
Proc. GULP 1993, pp. 569–584 (1993)

10. González-Moreno, J.C., Hortalá-González, M.T., Rodŕıguez-Artalejo, M.: On the
completeness of narrowing as the operational semantics of functional logic pro-
gramming. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M.
(eds.) CSL 1992. LNCS, vol. 702, pp. 216–230. Springer, Heidelberg (1993)

11. González-Moreno, J.C., Hortalá-González, T., López-Fraguas, F., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. of Logic Programming 40(1), 47–87 (1999)

12. Hanus, M.: The integration of functions into logic programming: From theory to
practice. J. of Logic Programming 19&20, 583–628 (1994)

13. Hanus, M.: Curry mailing list (March, 2007),
http://www.informatik.uni-kiel.de/∼curry/listarchive/0497.html

14. Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

15. Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. J. of Func-
tional Programming 9(1), 33–75 (1999)

16. Hanus, M. (ed.): Curry: An integrated functional logic language (version 0.8.2)
(March, 2006), http://www.informatik.uni-kiel.de/∼curry/report.html

17. Hussmann, H.: Non-Determinism in Algebraic Specifications and Algebraic Pro-
grams. Birkhäuser, Basel (1993)

18. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: Narrowing for
non-determinism with call-time choice semantics. In: Proc. WLP 2007 (2007)

19. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A simple rewrite
notion for call-time choice semantics. In: Proc. PPDP 2007, pp. 197–208. ACM
Press, New York (2007)

20. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: Rewriting and
call-time choice: the HO case (extended version). Tech. Rep. SIC-3-08 (2008),
http://gpd.sip.ucm.es/fraguas/papers/flops08long.pdf

21. López-Fraguas, F., Sánchez-Hernández, J.: T OY : A multiparadigm declarative sys-
tem. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999)

22. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

23. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

24. Nakahara, K., Middeldorp, A., Ida, T.: A complete narrowing calculus for higher-
order functional logic programming. In: Leopold, H., Coulson, G., Danthine, A.,
Hutchison, D. (eds.) COST-237 1994. LNCS, vol. 882, pp. 97–114. Springer, Hei-
delberg (1994)

25. Peyton Jones, S.L. (ed.): Haskell 98 Language and Libraries. The Revised Report.
Cambridge University Press, Cambridge (2003)

26. Plump, D.: Essentials of term graph rewriting. ENTCS 51 (2001)
27. van Raamsdonk, F.: Higher-order rewriting. In: Term Rewriting Systems, Cam-

bridge University Press, Cambridge (2003)
28. Rodŕıguez-Artalejo, M.: Functional and constraint logic programming. In: Comon,

H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 202–270.
Springer, Heidelberg (2001)

29. Warren, D.H.: Higher-order extensions to prolog: Are they needed? Machine Intel-
ligence 10, 441–454 (1982)

http://www.informatik.uni-kiel.de/~curry/listarchive/0497.html
http://www.informatik.uni-kiel.de/~curry/report.html
http://gpd.sip.ucm.es/fraguas/papers/flops08long.pdf

Semantics and Pragmatics of

New Shortcut Fusion Rules

Janis Voigtländer

Institut für Theoretische Informatik
Technische Universität Dresden

01062 Dresden, Germany
voigt@tcs.inf.tu-dresden.de

Abstract. We study various shortcut fusion rules for languages like
Haskell. Following a careful semantic account of a recently proposed rule
for circular program transformation, we propose a new rule that trades
circularity for higher-orderedness, and thus attains better semantic prop-
erties. This also leads us to revisit the original foldr/build-rule, as well as
its dual, and to develop variants that do not suffer from detrimental im-
pacts of Haskell’s mixed strict/nonstrict semantics. Throughout, we offer
pragmatic insights about our new rules to investigate also their relative
effectiveness, rather than just their semantic correctness.

1 Introduction

These are exciting times for enthusiasts of program transformations akin to
shortcut fusion. After the seminal paper on foldr/build-fusion [4], a number of
transformations derived from free theorems [15] have been developed over the
years, transferring the technique to other types than lists [5,11], or investigat-
ing new transformation schemes of similar flavour [2,10,12]. And recently there
seems to occur another upsurge of successes in this direction. On the one hand,
completely new ideas are developed, such as the circular fusion rule in [3]. On the
other hand, existing techniques are revisited and further developed in a way that
makes them more useful in practice [1]. And with the integration of call-pattern
specialisation into GHC [8], an important building block for successful fusion
(post-processing) is falling into place. With this paper we want to continue and
nurture this trend, by advancing semantic and pragmatic aspects of existing and
new transformations.

We take our start from the pfold/buildp-rule of [3]. It is of particular interest
from a semantic viewpoint as it is, due to its use of a circular local binding,
the first transformation in the shortcut fusion family that is usable exclusively
from a lazy language. This raises questions as to how the rule interacts with the
intricacies of Haskell’s semantics surrounding ⊥, fixpoint recursion, and selective
strictness. The authors of [3] describe their reasoning as “fast and loose” in this
respect. Here we investigate those issues, and prove total and partial correctness
results for the circular pfold/buildp-rule in Haskell.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 163–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

164 J. Voigtländer

Guided by a folklore idea on replacing circularity by higher-orderedness, we
then propose a new scheme for pfold/buildp-fusion that not only becomes usable
again in a purely strict language, but also plays well with potentially mixed
strict/nonstrict evaluation. In fact, we are able to prove total correctness of our
new rule without any preconditions on the producer and consumer functions.

The latter is quite remarkable after the completely different experiences made
in [6] for the classical foldr/build- and its dual destroy/unfoldr-rule. It leads us to
revisit those veteran transformations and to look for potential “repairs” of their
semantic deficiencies. And in fact we can transfer some insights and come up with
new, and much better behaved, variants of foldr/build- and destroy/unfoldr-fusion.

Throughout, we stay in touch with pragmatic considerations by examining
the impact of transformations on concrete examples. This allows us to investi-
gate also the effectiveness, rather than just the correctness, of our new propos-
als. For example, we carefully weigh the circular and higher-order flavours of
pfold/buildp-fusion against each other. And in some cases such pragmatic inves-
tigations actually lead to new rule variants.

We deliberately do not focus on a single program transformation. Instead,
we report a laboratory-like experience in which working on one rule provides
potential insights on another one as well, or indeed sparks a new idea that
helps to resolve an issue existing for an at first sight somewhat unrelated fusion
problem. This mode of operation has been very fruitful, and we would like to
encourage others to push the boundaries of shortcut fusion as well.

2 Circular Shortcut Fusion

In [3] a fusion rule for circular program calculation is proposed. Even though
it is originally given for arbitrary algebraic datatypes, we consider only the list
case here. For other types the development and results would be similar.

The involved combinators are given as follows:
buildp :: (forall a. (b → a → a)→ a → c → (a,z))→ c → ([b],z)
buildp g = g (:) []

pfold :: (b → a → z → a)→ (z → a)→ ([b],z)→ a
pfold h1 h2 (bs,z) = foldr (λb a → h1 b a z) (h2 z) bs

The idea underlying buildp is that g describes the production of an abstract list
(hence the list constructor arguments) over type b, and at the same time deliv-
ers an additional result of type z , both guided by an input parameter of type
c . A typical application of that scheme is the definition of the following function:

splitWhen :: (b → BOOL)→ [b] → ([b],[b])
splitWhen p = buildp go

where go con nil bs =
case bs of

[]→ (nil ,bs)
b:bs′ → if p b then (nil ,bs)

else let (xs,ys) = go con nil bs′ in (con b xs, ys)

Semantics and Pragmatics of New Shortcut Fusion Rules 165

The idea underlying pfold is that h1 and h2 describe the consumption of a list
over type b by structural recursion (via the standard function foldr), but can
take an additional parameter of type z into account while doing so. A typical
application of that scheme is the definition of the following function:
pfilter :: (b → z → BOOL)→ ([b],z)→ [b]
pfilter p = pfold (λb bs z → if p b z then b:bs else bs) (λ_ → [])

This variant of the classical filter-function uses a binary, rather than unary, pred-
icate for selecting list elements, where the second argument of that predicate is
fixed throughout and provided as additional input alongside the input list.

The rule from [3] now tells us, in general, to replace as follows:

pfold h1 h2 (buildp g c) � let (a,z) = g (λb a → h1 b a z) (h2 z) c in a .

Note the circularity in the right-hand side, preventing use of the rule in a strict
functional language. To see the rule in action, consider the following definition:
repeatedAfter :: EQ b ⇒ (b → BOOL)→ [b] → [b]
repeatedAfter p bs = pfilter elem (splitWhen p bs)

It provides a very natural specification of the following task: from the initial part
of an input list before a certain predicate holds for the first time, return those ele-
ments that are repeated afterwards. To benefit from the circular pfold/buildp-rule,
we inline the definitions of pfilter and splitWhen, apply the rule, and afterwards
perform some local optimisations as exemplified and described in more detail
in [1]. The result is the following version:
repeatedAfter′ p bs =

let
(a,z) = go′ bs
go′ bs = case bs of

[]→ ([],bs)
b:bs′ → if p b then ([],bs) else

let (xs,ys) = go′ bs′

in (if elem b z then b:xs else xs, ys)
in a

Note that even though z and go′ are mutually defined in terms of each other,
there is no “true” circularity, as lazy evaluation can order the computation in
an appropriate, terminating way.

However, the selective strictness feature of Haskell can ruin this approach
in an unexpected way. As an (admittedly artificial) counterexample, consider
g = (λ_ nil c → seq nil (nil ,c)), c = 42, h2 = (+1), and arbitrary (but appro-
priately typed) h1. Then pfold h1 h2 (buildp g c) is 43, while the transformed
expression let (a,z) = g (λb a → h1 b a z) (h2 z) c in a does not terminate! To
see why, take into account that by inlining g , c , and h2, it is equivalent to the
truly circular let (a,z) = seq (z+1) (z+1, 42) in a.

For classical foldr/build-fusion we know from [6] that total correctness even in
the presence of seq can be guaranteed by imposing certain restrictions on the
arguments to foldr. Trying to transfer those insights to the present setting, we

166 J. Voigtländer

come to investigate whether h1 ⊥ ⊥ z /= ⊥ and h2 z /= ⊥ (because the arguments
to foldr in the definition of pfold h1 h2 are (λb a → h1 b a z) and h2 z). But this
raises the question which z to consider here. It seems natural to consider the
second element of the pair returned by buildp g c , as that is exactly what gets
passed to pfold h1 h2 before the circular fusion rule is applied. But tempting as
this intuition is, it must be wrong! This is evidenced by the above counterex-
ample, where buildp g c = ([],42) and h2 42 = 43 /= ⊥ (and h1 could be chosen
arbitrarily, in particular in a way such that h1 ⊥ ⊥ 42 /= ⊥ as well), and yet we
found that applying the circular fusion rule was not semantics-preserving.

This motivates a more careful study of the latter’s semantics than is currently
available. To help us in this endeavour, we first establish an auxiliary lemma. By
convention, a function f is strict if f ⊥ = ⊥; total if f x /= ⊥ for every x /= ⊥.

Lemma 1. Let T1, T2, and T3 be types. Let c :: T2 and

g :: forall a. (T1 → a → a)→ a → T2 → (a,T3) .

Then for every type T′, q :: T1 → T′ → T′, and strict and total f :: [T1] → T′,

(q /= ⊥ ∧ ∀ b :: T1. q b /= ⊥ ∧ ∀ bs :: [T1]. f (b:bs) = q b (f bs))
⇒ g q (f []) c = case buildp g c of (bs,z′)→ (f bs, z′) .

(1)

The proof via a free theorem builds on the results from [6] and is given in the
appendix. The most important pieces to note here are the preconditions relating
to ⊥ and the strictness and totality restrictions on f . These are exactly the kind
of things that one needs to pay close attention to when trying to derive semantic
statements that remain valid for Haskell even in the presence of general recursion
and selective strictness. Note also that all Haskell types are pointed, so that, for
example, the quantification over b :: T1 includes the case b = ⊥.

Based on Lemma 1, we can now prove the following theorem which provides
the desired preconditions for total correctness of circular pfold/buildp-fusion.

Theorem 1. Let T1, T2, T3, and T4 be types. Let c :: T2, h1 :: T1 → T4 → T3 →
T4, h2 :: T3 → T4, and

g :: forall a. (T1 → a → a)→ a → T2 → (a,T3) .

If h1 ⊥ ⊥ ⊥ /= ⊥ and h2 ⊥ /= ⊥, then

pfold h1 h2 (buildp g c) = let (a,z) = g (λb a → h1 b a z) (h2 z) c in a .

The proof is given in the appendix. In it, the circular binding in the expression
after fusion is described by an explicit use of fixpoint recursion. This helps to
pin down why it is not enough to require h1 ⊥ ⊥ z /= ⊥ and h2 z /= ⊥ for the
second element z of the pair returned by buildp g c : since fixpoint recursion
conceptually starts from ⊥ (as in fix f =

⊔
f i⊥; the actual definition used in the

proof calculation is fix f = f (fix f)), the circular “hunting” for z in the program
after fusion also starts out with ⊥, which might then interfere with seq. This

Semantics and Pragmatics of New Shortcut Fusion Rules 167

precisely explains the counterexample we observed earlier, and why it was not
sufficient there that h2 42 /= ⊥.

For classical foldr/build-fusion we can avoid preconditions if settling for partial
rather than total correctness [6]. Let us see whether the same is possible here.
To that end, we need to look at “inequational” versions of the statements we
have derived so far. Typically, to any “equational” free theorem correspond two
inequational ones. For Lemma 1, one of the two variants is as follows.

Lemma 2. Let T1, T2, and T3 be types. Let c :: T2 and

g :: forall a. (T1 → a → a)→ a → T2 → (a,T3) .

Then for every type T′, q :: T1 → T′ → T′, and strict f :: [T1] → T′,

(∀ b :: T1, bs :: [T1]. f (b:bs) � q b (f bs))
⇒ g q (f []) c � case buildp g c of (bs,z′)→ (f bs, z′) .

Note that the new lemma does not require f to be total. The price to pay for this
is that the final statement only provides a semantic approximation. The reading
of “�” is that the right-hand side is at least as defined as the left-hand side.

As usual, there is also a second inequational variant. However, we have found
that it does not lead to any insight beyond what we already know from the
equational setting. That is why we only give Lemma 2 here. Based on it, we
can prove (largely by mirroring the proof of Theorem 1) the following theo-
rem which establishes partial correctness of circular pfold/buildp-fusion without
preconditions.

Theorem 2. Let T1, T2, T3, and T4 be types. Let c :: T2, h1 :: T1 → T4 → T3 →
T4, h2 :: T3 → T4, and

g :: forall a. (T1 → a → a)→ a → T2 → (a,T3) .

Then

pfold h1 h2 (buildp g c) � let (a,z) = g (λb a → h1 b a z) (h2 z) c in a .

Note that the counterexample to total correctness given earlier fits into the
picture here. There, we observed that 43 got transformed into ⊥. This certainly
agrees with the above statement.

Note also that the partial correctness result does by no means imply that
the circular fusion rule decreases definedness always when any of the precon-
ditions from Theorem 1 is violated. Indeed, the repeatedAfter-example from
earlier in this section does not suffer from any introduction of failure, even
though an investigation of the first argument to pfold in that fusion instance
shows that the first precondition from Theorem 1 is not fulfilled, given that
(if elem ⊥ ⊥ then ⊥:⊥ else ⊥) = ⊥. However, the problem is that for such con-
sumers we may not guarantee total correctness. For example, one can easily
come up with a producer whose fusion with pfilter elem does actually lead to a
decrease in definedness, so that Theorem 2 is the best one can say. In particu-
lar, it does not make sense to try to prove a somehow “better” Theorem 1 that

168 J. Voigtländer

makes do with less strong, and therefore more practical, preconditions. There is
no circumventing the fact that there exist g of the given type that make the con-
ditions h1 ⊥ ⊥ ⊥ /= ⊥ and h2 ⊥ /= ⊥ necessary in their full, combined pessimism.
Inventing new rules, however, can make a difference.

3 Higher-Order Shortcut Fusion

It is an old idea to replace circular definitions, such as obtained from the elimi-
nation of multiple traversals, by higher-order ones. In the terminology of [7], this
is achieved by import and export of information. Thus guided, we would like to
develop a variant of pfold/buildp-fusion that is unaffected by selective (or, indeed,
full) strict evaluation. In doing so, we clearly want to preserve the advantages of
the circular fusion rule such as elimination of the intermediate list and effective
handling of the additional result produced by buildp and used by pfold. We know
from [13] that a transformation of circularity into higher-orderedness is not al-
ways possible. But for the setup we consider here, it turns out that there is a
way to achieve it for every fusion instance.

Concretely, we propose to replace as follows:

pfold h1 h2 (buildp g c)
�

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k ,z)→ k z .

Note that there is no circularity in the right-hand side. Indeed, our new rule is
applicable in a strict language just as well as in a lazy or mixed evaluation one.
It is higher-order in the sense that it uses a function k where the circular rule
used a value a.

To see the new rule in action, consider again the function definition for
repeatedAfter. After inlining the definitions of pfilter and splitWhen, applying the
higher-order fusion rule, and performing local optimisations as mentioned earlier,
the result now is the following version:
repeatedAfter′′ p bs =

case
let go′ bs = case bs of

[]→ (λz → [], bs)
b:bs′ → if p b then (λz → [], bs)

else
let (xs,ys) = go′ bs′

in (λz → if elem b z then b:(xs z) else xs z, ys)
in go′ bs

of (k ,z)→ k z

Another interesting instance is the counterexample we used earlier to demon-
strate the weaknesses of the circular fusion rule: g = (λ_ nil c → seq nil (nil ,c)),
c = 42, and h2 = (+1). For the higher-order fusion rule this poses no problems
at all: after fusion, we still get 43 as result.

Semantics and Pragmatics of New Shortcut Fusion Rules 169

In order to see whether such positive outcome is obtained for every fusion
instance, we investigate total correctness of the new rule. We can reuse Lemma 1
to this purpose. Indeed, based on it, we can prove the following theorem.

Theorem 3. Let T1, T2, T3, and T4 be types. Let c :: T2, h1 :: T1 → T4 → T3 →
T4, h2 :: T3 → T4, and

g :: forall a. (T1 → a → a)→ a → T2 → (a,T3) .

Then

pfold h1 h2 (buildp g c)
=

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k ,z)→ k z .

We omit further proof details here. In fact, we will do so also for the remaining
theorems in this paper. Suffice it to say that they can all be proved using the
general goal-directed approach presented in [14].

Analysing why total correctness without preconditions holds in Theorem 3
leads to the realization that seq simply cannot do any harm in the presence of the
“extra” lambda-abstractions that prevent g from encountering a ⊥-value when
combining its arguments, even though h1 and/or h2 might very well contain or
produce such values. The need to preserve those protective lambda-abstractions
also means that it is not safe to perform eta-reduction of (λz → h2 z) to h2. In-
deed, eta-reduction is not valid in Haskell with seq and should not be performed
by any compiler.

That the above theorem establishes total correctness unconditionally is a much
more satisfying situation than with circular pfold/buildp-fusion. However, from
a pragmatic, rather than semantic, viewpoint the picture is not quite as clear.
Consider, for example, the following function definition:
greaterThanMinAfter :: ORD b ⇒ (b → BOOL)→ [b] → [b]
greaterThanMinAfter p bs = pfilter (λb bs′ → b > minimum bs′) (splitWhen p bs)

After inlining the definitions of pfilter and splitWhen, applying the higher-order
fusion rule, and performing the usual local optimisations, we obtain from it a ver-
sion greaterThanMinAfter′ whose function body differs from that of repeatedAfter′′

seen earlier in this section only in that the third-last line looks as follows:
in (λz → if b > minimum z then b:(xs z) else xs z , ys)

But precisely this line exposes an issue that we might want to improve on.
Namely, we see that minimum z will be computed repeatedly for comparison
against all elements of bs until p holds for the first time. There is no apparent
way how to avoid this recomputation, even though it is actually the case for given
arguments p and bs to greaterThanMinAfter′ that whenever program evaluation
reaches this expression, the value of z is the same. But it would simply require
too advanced a flow analysis from the compiler to automatically detect this.
Similar observations regarding a loss of sharing for shortcut fusion rules were
made in [10].

170 J. Voigtländer

Closer analysis of the above issue reveals that it occurs whenever the consum-
ing pfold would actually be better served with an image, under some function h,
of the second element of the pair returned by the producing buildp, rather than
with that second element itself. This insight leads us to establish the following
slight variation of Theorem 3.

Theorem 4. Let T1, T2, T3, T′
3, and T4 be types. Let c :: T2, h :: T′

3 → T3,
h1 :: T1 → T4 → T3 → T4, h2 :: T3 → T4, and

g :: forall a. (T1 → a → a)→ a → T2 → (a,T′
3) .

Then

case buildp g c of (bs,z′)→ pfold h1 h2 (bs, h z′)
=

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k ,z)→ k (h z) . (2)

Note that this theorem again gives total correctness without any preconditions.
Unfortunately, it is not as readily applicable for fusion as our earlier results,
because the left-hand side is not a simple combination of a producer- and a
consumer-combinator. This is easily remedied, though. We can define variants
of the original combinators as follows:
buildp′ :: (forall a. (b → a → a)→ a → c → (a,z′))→ c → (z′ → z)→ ([b],z)
buildp′ g c h = case g (:) [] c of (bs,z′) → (bs, h z′)

pfold′ :: (b → a → z → a)→ (z → a)→ (z′ → z)→ ([b],z′)→ a
pfold′ h1 h2 h (bs,z′) = let z = h z′ in foldr (λb a → h1 b a z) (h2 z) bs

Then Theorem 4 tells us that we can semantics-preservingly replace either of
pfold h1 h2 (buildp′ g c h) and pfold′ h1 h2 h (buildp g c) by (2) or, indeed, replace
as follows:

pfold′ h1 h2 h′ (buildp′ g c h)
�

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k ,z)→ k (h′ (h z)) .

The new combinators provide us with the means to define a variant of
greaterThanMinAfter that after applying one of the just given semantics-preserving
rules leads to a version greaterThanMinAfter′′ which avoids repeated computa-
tion with minimum by having a function body that differs from the one of
repeatedAfter′′ only in that the three final lines look as follows:

in (λz → if b > z then b:(xs z) else xs z , ys)
in go′ bs

of (k ,z)→ k (minimum z)

Note that all the rules proposed in this section are also applicable in a purely
strict language. There, however, they can increase (though never decrease) the
definedness of a program. Consider, for example, the rule proposed last. If h1 is a
nonterminating expression, then the left-hand side pfold′ h1 h2 h′ (buildp′ g c h)
is nonterminating as well. But the corresponding right-hand side might very well
be terminating, for example if g does not use its first argument.

Semantics and Pragmatics of New Shortcut Fusion Rules 171

4 Circular Versus Higher-Order Fusion

Having observed that extra effort may be needed to prevent a certain loss of shar-
ing when performing higher-order pfold/buildp-fusion, it should be interesting, by
way of comparison, to see whether the same issue exists for the original, circular
rule as well. So consider, again, the function definition for greaterThanMinAfter.
After inlining the definitions of pfilter and splitWhen, applying the circular fusion
rule leads to a version greaterThanMinAfter′′′ whose function body differs from
that of repeatedAfter′ seen in Section 2 only in that the next-to-last line looks as
follows:

in (if b > minimum z then b:xs else xs, ys)

In contrast to what we had with higher-order fusion, the z is now not locally
lambda-bound. In fact, it is not local to the go′-function at all. This means
that the full laziness transformation [9], to some extent implemented also in
GHC, can effectively avoid recomputations of minimum z by floating that whole
expression out. Then, a better degree of sharing is achieved than in higher-order
fusion prior to introducing extra combinators and rules. However, recall that for
circular fusion one cannot guarantee total correctness unrestrictedly. And indeed,
the first argument to pfold in the greaterThanMinAfter-example does not satisfy
the first precondition from Theorem 1. So the potential for better sharing here
is bought by having to settle for only a partial correctness guarantee, or total
correctness under conditions that cannot in general be checked automatically by
a compiler.

In case full laziness is not implemented in the compiler, or does not “fire”, good
sharing can be recovered for circular fusion just as it was for higher-order fusion
in the previous section, by giving appropriate rules for the generalised combi-
nators pfold′ and buildp′. Note however, that in the absence of full laziness even
the original program before any fusion might suffer from a lack of sharing. For
example, an expression pfilter (λb bs′ → b > minimum bs′) (bs,z) is, by the def-
initions, the same as foldr (λb a → if b > minimum z then b:a else a) [] bs. Here
only full laziness can prevent minimum z from being calculated repeatedly. This
reinstates that pragmatics can be as important as semantics when designing and
studying program transformations.

5 Variations of Classical Shortcut Fusion

That the higher-order version of pfold/buildp-fusion turned out to be totally
correct without any preconditions is rather pleasing, and raises the question
whether a similar “repair” is also possible for classical foldr/build-fusion from [4].

Recall that build is defined as follows:
build :: (forall a. (b → a → a)→ a → a)→ [b]
build g = g (:) []

and that classical shortcut fusion lets us replace as follows:

foldr h1 h2 (build g) � g h1 h2 .

172 J. Voigtländer

As first observed in [12], this transformation is not totally correct in Haskell
(while in [6] we have seen that it is partially correct, and totally correct un-
der the preconditions that h1 ⊥ ⊥ /= ⊥ and h2 /= ⊥). As mentioned earlier, the
reason that total correctness without preconditions could be proved in Theo-
rem 3 (and 4) is that seq could not do any harm there due to the omnipresent
lambda-abstractions. This motivates to consider also, for example, the following
rule:

foldr h1 h2 (build g) � g (λb k z → h1 b (k z)) (λz → h2) () .

Note the use of () :: () as proxy value. Total correctness is established by the
following theorem.

Theorem 5. Let T1 and T2 be types. Let h1 :: T1 → T2 → T2, h2 :: T2, and

g :: forall a. (T1 → a → a)→ a → a .

Then

foldr h1 h2 (build g) = g (λb k z → h1 b (k z)) (λz → h2) () .

The theorem provides a totally correct foldr/build-rule without preconditions.
But what about the pragmatics of transformation? Consider the archetypical
example for foldr/build-fusion:
upTo :: INT → [INT]
upTo n = build (go 1)

where go i con nil = if i>n then nil else con i (go (i+1) con nil)

sum :: [INT] → INT

sum = foldr (+) 0

sumTo :: INT → INT

sumTo n = sum (upTo n)

Inlining the definitions of sum and upTo into that of sumTo and applying the rule
suggested above leads to the following version:
sumTo′ n = go′ 1 () where go′ i = if i>n then λz → 0 else λz → i+(go′ (i+1) z)

It is apparent here that all the z will always be bound to the proxy value ().
But there is little hope that the compiler is smart enough to transform this
“plumbing” away. Similar issues appear for variations on the theme of employing
higher-orderedness to make foldr/build-fusion unconditionally totally correct.

However, there is an alternative. As noted earlier, the essential role of the
lambda-abstractions is to protect g from undesired encounters with ⊥. But the
same feat can be achieved without resorting to higher-orderedness. In fact, we
propose a variant that is a kind of “defunctionalisation” of the above idea. To
this end, we introduce the following datatype (purposefully not a newtype, in
which case we would get J ⊥ = ⊥, contrary to what we want):
data J a = J {unJ :: a}

Semantics and Pragmatics of New Shortcut Fusion Rules 173

Then we propose to replace as follows:

foldr h1 h2 (build g) � unJ (g (λb a → J (h1 b (unJ a))) (J h2)) .

This is justified by the following theorem which establishes unconditional total
correctness.

Theorem 6. Let T1 and T2 be types. Let h1 :: T1 → T2 → T2, h2 :: T2, and

g :: forall a. (T1 → a → a)→ a → a .

Then

foldr h1 h2 (build g) = unJ (g (λb a → J (h1 b (unJ a))) (J h2)) .

If we use this new rule to transform the sumTo-example from above, we get the
following version:
sumTo′′ n=unJ (go′ 1) where go′ i =if i>n then J 0 else J (i+(unJ (go′ (i+1))))

This again uses extra plumbing, now through the J type. However, there exists
a very simple idea of eliminating that. In [8], specialisation of functions for
constructor-call-patterns is proposed, with an existing implementation in GHC.
The paper also discusses an extension to specialisation for function-call-patterns.
Assume this were applied above by introducing a new local function unJ′ such
that unJ′ i always corresponds to unJ (go′ i). This would give:
sumTo′′′ n = unJ′ 1 where unJ′ i = unJ (if i>n then J 0 else J (i+(unJ′ (i+1))))

and finally, applying standard optimisations implemented in GHC:
sumTo′′′′ n = unJ′ 1 where unJ′ i = if i>n then 0 else i+(unJ′ (i+1))

This is the version we ultimately want to see after foldr/build-fusion, and in fact
do get to see after standard foldr/build-fusion à la [4] as well, but now it was
obtained going only through perfectly safe transformations, rather than relying
on the original fusion rule that may or may not be totally correct in a given
situation. And the heuristics required for an implementation along the lines
of [8] would be very simple: we can always try to specialise unJ for a function
call occurring in its argument, assuming that J is a private datatype of the
compiler so that unJ is introduced only during shortcut fusion as above.

At least as interesting as the example above is one where the standard
foldr/build-rule actually breaks. Consider the following function:
lastEvenOrEmpty :: [INT] → [INT]
lastEvenOrEmpty bs =

build (λcon nil → foldl′ (λa b → if even b then con b nil else a) nil bs)

It uses the standard Haskell function foldl′ to return, in a singleton list, the last
even element from an integer list provided as input. If no even element exists,
the empty list is returned. To allow eventual fusion, the output list is abstracted
over via build. Consider further the following function, relying on the above to
return the last even element without packaging it in a list:

174 J. Voigtländer

lastEven :: [INT] → INT

lastEven bs = head (lastEvenOrEmpty bs)

Here head is another standard Haskell function, defined via foldr as follows:1

head :: [b] → b
head = foldr (λb _ → b) (error “Prelude.head: empty list”)

Applying the original foldr/build-rule leads to the following version of lastEven:

lastEven′ bs = foldl′ (λa b → if even b then b else a) (error “...”) bs

Surprisingly, computing lastEven′ [1,2] leads to a runtime error, even though
lastEven [1,2] = 2. Actually, an occurrence of seq inside the definition of foldl′:

foldl′ :: (a → b → a) → a → [b] → a
foldl′ f = go

where
go a bs = case bs of

[]→ a
b:bs′ → let a′ = f a b in seq a′ (go a′ bs′)

has caused foldr/build-fusion to go wrong, in line with the observation that the
rule is in general only partially correct.2

How, then, about our new rule that according to Theorem 6 is totally correct?
Applying it to lastEven and afterwards inlining the definition of foldl′ leads to
the following version:
lastEven′′ bs = unJ (go (J (error “Prelude.head: empty list”)) bs)

where
go a bs = case bs of

[]→ a
b:bs′ → let a′ = (if even b then J b else a) in seq a′ (go a′ bs′)

Here the J-constructors prevent unwarranted encounters of seq with ⊥, so that
we still have, for example, lastEven′′ [1,2] = 2. Moreover, a clever compiler per-
forming call-pattern specialisation of go for J as implemented in [8], as well as the
proposed specialisation of unJ for a fixed function-call-pattern, should be able to
transform the above into essentially the following definition without plumbing:
lastEven′′′ bs = unJ′ (error “Prelude.head: empty list”) bs

where
unJ′ a bs = case bs of

[]→ a
b:bs′ → let e = even b in seq e (unJ′ (if e then b else a) bs′)

This is safe and effective fusion in the presence of seq!

1 Actually, head is defined by direct pattern matching in the standard Haskell prelude.
However, GHC features a specialised head/build-rule whose effect is exactly the same
as that of the general foldr/build-rule in combination with the formulation of head in
terms of foldr as given here.

2 Clearly, without that occurrence of seq, and thus with foldl instead of its strictified
version foldl′, we would have obtained lastEven′ [1,2] = 2.

Semantics and Pragmatics of New Shortcut Fusion Rules 175

For comparison, if we had sticked with the higher-order approach, Theorem 5
would have led us from lastEven to the following version:
lastEven′′′′ bs = go (λz → error “Prelude.head: empty list”) bs ()

where
go a bs =

case bs of
[]→ a
b:bs′ → let a′ = (if even b then λz → b else a) in seq a′ (go a′ bs′)

This is just as safe as lastEven′′ (and lastEven′′′) above, but seems to offer fewer
possibilities for optimising the plumbing away.

6 Variation of the Dual of Classical Shortcut Fusion

Having dealt with classical foldr/build-fusion so successfully, we turn to its dual
from [10], trying to tame the impact of seq on that transformation as well. Recall
that the relevant combinators are defined as follows:

unfoldr :: (c → MAYBE (b,c))→ c → [b]
unfoldr psi c = case psi c of

NOTHING → []
JUST (b,c′) → b:(unfoldr psi c′)

destroy :: (forall c . (c → MAYBE (b,c)) → c → a)→ [b] → a
destroy g = g (λbs → case bs of {[]→ NOTHING; b:bs′ → JUST (b,bs′)})
The destroy/unfoldr-rule tells us to replace as follows:

destroy g (unfoldr psi c) � g psi c .

But in [6] we found that there are several semantic problems with this rule in
Haskell. Even in the absence of seq it is no semantic equivalence, as the right-
hand side might be more defined than the left-hand side. And in the presence
of seq the even worse situation can occur that there is a decrease of definedness
from left to right.

Based on the ideas from the previous section, we can provide a repair now. In
fact, the following theorem holds, in the statement of which we use fmap from
Haskell’s FUNCTOR type class for brevity.

Theorem 7. Let T1, T2, and T3 be types. Let c :: T2, psi :: T2 → MAYBE (T1,T2),
and

g :: forall c . (c → MAYBE (T1,c))→ c → T3 .

Then

destroy g (unfoldr psi c) � g (fmap (fmap J) . psi . unJ) (J c) .

Note that the theorem has no extra preconditions. It thus recovers, for Haskell
including seq, the situation that existed for the original destroy/unfoldr-rule in
the absence of seq.

176 J. Voigtländer

To evaluate the new destroy/unfoldr-rule’s pragmatic worth, we again consider
the sumTo-example, but this time with components expressed as follows:
upTo n = unfoldr psiUT 1 where psiUT i = if i>n then NOTHING else JUST (i , i+1)

sum = destroy g where g psi c = case psi c of
NOTHING → 0
JUST (b,c′)→ b+(g psi c′)

Inlining these two definitions into that of sumTo and applying the rule suggested
by Theorem 7 leads to the following version:
sumTo′ n = g′ (J 1)

where g′ c = let i = unJ c in if i>n then 0 else i+(g′ (J (i+1)))

To optimise this further, we do not even need an extension of the technique
from [8]. Instead, the version of call-pattern specialisation as currently imple-
mented in GHC suffices to give the following version:
sumTo′′ n = g′′ 1 where g′′ i = if i>n then 0 else i+(g′′ (i+1))

Again, the “safety net” that was introduced during fusion to cope with poten-
tially malicious uses of seq could be eliminated completely afterwards.

It would be interesting to see whether one can proceed similarly for stream
fusion as recently proposed in [1]. This transformation is essentially derived from
destroy/unfoldr-fusion and also suffers from interaction with seq. In particular,
the authors of [1] remain rather vague on strictness issues as related to seman-
tic correctness. A repair here would immediately benefit the safety of Haskell
programs under the stream fusion optimisation scheme.

7 Discussion

During the course of this paper, we have studied various shortcut fusion rules.
Our main contributions are a total correctness result for circular pfold/buildp-
fusion under appropriate preconditions (Theorem 1), a corresponding partial
correctness result without any preconditions (Theorem 2), an unconditionally
totally correct higher-order pfold/buildp-fusion rule (Theorem 3), a variation of
the latter scheme with improved sharing (Theorem 4), two unconditionally to-
tally correct foldr/build-fusion rules (Theorems 5 and 6), an unconditionally safely
approximating destroy/unfoldr-fusion rule (Theorem 7), as well as pragmatic in-
sights about the relative effectiveness of our new rules.

To put the many rules in perspective, a few comparisons seem in place. First of
all, the three flavours “parameter-passing fusion”, “classical fusion”, and “dual
of classical fusion” address different kinds of consumer/producer-pairs, so there
is no best choice among them. Below that level of distinction, however, some
observations can be made.

One lesson we have learnt is that the variants pfold′ and buildp′ of pfold and
buildp, respectively, are more robust with respect to sharing computation on
the parameter being passed around. Independently of the correctness issue, the
decision whether to prefer circular or higher-order fusion for this setting could

Semantics and Pragmatics of New Shortcut Fusion Rules 177

be largely influenced by the relative impact of these two strategies on efficiency.
Preliminary measurements indicate that both are about on a par, but more
systematic experimentation might provide new insights here.

For classical fusion and its dual, we have proposed two alternative strategies
to improve semantic properties, in particular to prevent a decrease in program
definedness via transformation. Of these, we clearly favour the approach via
the datatype J over the approach via extra lambda-abstractions. The reason
is that we then see better potential for automatic subsequent removal of the
plumbing introduced to prevent undesirable encounters between seq and ⊥. Even
for the J-approach, the situation is not yet fully satisfactory. While for our
destroy/unfoldr-example standard constructor-call-pattern specialisation suffices,
the kind of post-processing required in the foldr/build-setting was more ad-hoc.
Hopefully, a more general solution can be found here. Otherwise, it is unclear
how the better behaviour in semantic regards will weigh up against pragmatic
efficiency risks. Does correctness really trump performance?

The story of new fusion rules does not end here. One reviewer proposal was
to apply the J-approach also to circular pfold/buildp-fusion. In fact, the rule

pfold h1 h2 (buildp g c)
�

let (a,z) = g (λb a → J (h1 b (unJ a) z)) (J (h2 z)) c in unJ a

can be shown unconditionally totally correct by a relatively straightforward
adaptation of the proof in Appendix A.2, and a variant for pfold′ and buildp′

is possible as well. However, post-processing becomes even more of a problem
here. Already for the repeatedAfter-example from Section 2 the above rule leads
to a transformed program for which it is considerably more difficult to conceive
of a successful plumbing-removal than for the examples seen in Sections 5 and 6.

Acknowledgements. I thank the anonymous reviewers for their detailed com-
ments and suggestions, most of which I have tried to follow up on.

References

1. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion: From lists to streams to
nothing at all. In: International Conference on Functional Programming, Proceed-
ings, pp. 315–326. ACM Press, New York (2007)

2. Domı́nguez, F., Pardo, A.: Program fusion with paramorphisms. In: Mathemati-
cally Structured Functional Programming, Proceedings. Electronic Workshops in
Computing, British Computer Society (2006)

3. Fernandes, J.P., Pardo, A., Saraiva, J.: A shortcut fusion rule for circular program
calculation. In: Haskell Workshop, Proceedings, pp. 95–106. ACM Press, New York
(2007)

4. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In:
Functional Programming Languages and Computer Architecture, Proceedings, pp.
223–232. ACM Press, New York (1993)

5. Johann, P.: A generalization of short-cut fusion and its correctness proof. Higher-
Order and Symbolic Computation 15(4), 273–300 (2002)

178 J. Voigtländer

6. Johann, P., Voigtländer, J.: The impact of seq on free theorems-based program
transformations. Fundamenta Informaticae 69(1–2), 63–102 (2006)

7. Pettorossi, A., Proietti, M.: Importing and exporting information in program devel-
opment. In: Partial Evaluation and Mixed Computation, Proceedings, pp. 405–425.
North-Holland, Amsterdam (1987)

8. Peyton Jones, S.L.: Call-pattern specialisation for Haskell programs. In: Interna-
tional Conference on Functional Programming, Proceedings, pp. 327–337. ACM
Press, New York (2007)

9. Peyton Jones, S.L., Lester, D.: A modular fully-lazy lambda lifter in Haskell. Soft-
ware Practice and Experience 21(5), 479–506 (1991)

10. Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions.
In: International Conference on Functional Programming, Proceedings, pp. 124–
132. ACM Press, New York (2002)

11. Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Functional
Programming Languages and Computer Architecture, Proceedings, pp. 306–313.
ACM Press, New York (1995)

12. Voigtländer, J.: Concatenate, reverse and map vanish for free. In: International
Conference on Functional Programming, Proceedings, pp. 14–25. ACM Press, New
York (2002)

13. Voigtländer, J.: Using circular programs to deforest in accumulating parameters.
Higher-Order and Symbolic Computation 17(1–2), 129–163 (2004)

14. Voigtländer, J.: Proving correctness via free theorems: The case of the
destroy/build-rule. In: Partial Evaluation and Semantics-Based Program Manipu-
lation, Proceedings, pp. 13–20. ACM Press, New York (2008)

15. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, Proceedings, pp. 347–359. ACM Press, New York (1989)

A Proofs Appendix

A.1 Proof of Lemma 1

Proof. The “equational” free theorem derived from the type of g is that for every
choice of types T and T′, strict and total f :: T → T′, and arbitrary p :: T1 → T →
T and q :: T1 → T′ → T′,

((p /= ⊥ ⇔ q /= ⊥)
∧ ∀ b :: T1. (p b /= ⊥ ⇔ q b /= ⊥) ∧ ∀ bs :: T. f (p b bs) = q b (f bs))
⇒ ∀ u :: T, c :: T2.

(g p u c, g q (f u) c) ∈ {(⊥,⊥)} ∪ {((bs,z),(bs′,z′)) f bs = bs′ ∧ z = z′}
We instantiate T = [T1], p = (:), and u = [], observe that then p /= ⊥ and p b /= ⊥
for every b :: T1, and use the definition of buildp. This gives that if the precon-
dition (1) holds, then for every c :: T2,

(buildp g c, g q (f []) c) ∈ {(⊥,⊥)} ∪ {((bs,z),(bs′,z′)) f bs = bs′ ∧ z = z′}.
The lemma follows easily from this. �

Semantics and Pragmatics of New Shortcut Fusion Rules 179

A.2 Proof of Theorem 1

We need the following auxiliary lemma.

Lemma 3. Let T1, T3, and T4 be types. Let h1 :: T1 → T4 → T3 → T4, h2 :: T3 →
T4, bs :: [T1], and z′ :: T3. Then

fst (fix (λ ˜(_,z) → (foldr (λb a → h1 b a z) (h2 z) bs, z′)))

is equivalent to
foldr (λb a → h1 b a z′) (h2 z′) bs .

Proof. Let exp = fix (λ ˜(_,z)→ (foldr (λb a → h1 b a z) (h2 z) bs, z′)). It is
easy to see that exp is equivalent to

(λz → (foldr (λb a → h1 b a z) (h2 z) bs, z′)) (snd exp) .

This implies that fst exp is equivalent to

foldr (λb a → h1 b a (snd exp)) (h2 (snd exp)) bs ,

while snd exp is equivalent to z′. The lemma follows easily from these facts. �

Now we can prove Theorem 1.

Proof. For every z :: T3, Lemma 1 with T′ = T4, q = (λb a → h1 b a z), and
f = foldr (λb a → h1 b a z) (h2 z) gives

g (λb a → h1 b a z) (h2 z) c
=

case buildp g c of (bs,z′)→ (foldr (λb a → h1 b a z) (h2 z) bs, z′) .

Note that the assumptions on h1 and h2 are equivalent to the requirement that
the chosen f is strict and total for every z :: T3.

We express

let (a,z) = g (λb a → h1 b a z) (h2 z) c in a

via explicit fixpoint recursion as follows:

fst (fix (λ ˜(_,z)→ g (λb a → h1 b a z) (h2 z) c)) .

By the above, this is equivalent to

fst (fix (λ ˜(_,z)→ case buildp g c of
(bs,z′)→ (foldr (λb a → h1 b a z) (h2 z) bs, z′))) .

The subexpression buildp g c is either equivalent to ⊥ or to (bs,z′) for some fixed
bs and z′. In both cases, the full expression is equivalent to

case buildp g c of (bs,z′)→ foldr (λb a → h1 b a z′) (h2 z′) bs .

If buildp g c = ⊥, then this equivalence holds by fst (fix (λ_ → ⊥)) = ⊥. Other-
wise, it follows from Lemma 3. By the definition of pfold we finally get equivalence
to pfold h1 h2 (buildp g c). �

A Generalization of the Folding Rule

for the Clark-Kunen Semantics�

Javier Álvez and Paqui Lucio

Basque Country University
{javier.alvez,paqui.lucio}@ehu.es

Abstract. In this paper, we propose more flexible applicability condi-
tions for the folding rule that increase the power of existing unfold/fold
systems for normal logic programs. Our generalized folding rule enables
new transformation sequences that, in particular, are suitable for re-
cursion introduction and local variable elimination. We provide some
illustrative examples and give a detailed proof of correctness w.r.t. the
Clark-Kunen semantics.

1 Introduction

Unfold/fold transformation systems were originally adapted by Tamaki and Sato
in [29] to logic programming from the well-known Burstall-Darlington method for
functional programming (see [7]). Tamaki and Sato’s seminal unfold/fold system
works on definite logic programs preserving their equivalence in the sense of the
least Herbrand model. Since then, unfold/fold transformations of logic programs
have been extensively studied and used (see [23] for a survey). In particular,
different extensions of the Tamaki and Sato’s system for dealing with negation
have been proposed. The various semantics of negation in logic programming
lead to different requirements in transformation rules depending on which se-
mantics is intended to be preserved. The main motivation of this paper comes
from our previous work (see [20,2]) in constructive negation (see [8]), which is
sound and complete w.r.t. the Clark-Kunen semantics (see [9,18]). Hence, we are
interested in transformation systems that preserve the Clark-Kunen semantics.
The choice of the negation semantics is crucial for defining the side conditions
of transformation rules. The following example illustrates this point.

Example 1. Given the following two clauses

P0: 1. p← q, r 2. q ← q

by unfolding q in the body of clause 1 with clause 2 we obtain clause 3, which
is a copy of the clause 1

P1: 3. p← q, r 2. q ← q.

� This work has been partially supported by Spanish Project TIN2004-079250-C03-03.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 180–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Generalization of the Folding Rule for the Clark-Kunen Semantics 181

Now, if we allow to fold the body of the clause 3 using clause 1 (which can be
seen as either a self-folding or a folding with a deleted clause) then we obtain

P2: 4. p← p 2. q ← q. ��
First, note that the programs in the above example are propositional and posi-
tive, which makes more intrinsic the following problem. Let us consider another
popular declarative semantics for negation: the well-founded semantics (see [14]).
The programs P0 and P1 are equivalent w.r.t. both the Clark-Kunen and the
well-founded semantics. Besides, P0 and P2 are equivalent w.r.t. the well-founded
semantics, but they are not equivalent w.r.t. the Clark-Kunen semantics. More
precisely, the well-founded model of P0 and P2 is (∅, {p, q, r}), where no atom
is true nor undefined and every atom is assigned to be false. However, Clark’s
completion of P0 is

(p↔ (q ∧ r)) ∧ (q ↔ q) ∧ (r↔ false)

so that ¬p is a three-valued consequence of it, whereas P2’s completion is

(p↔ p) ∧ (q ↔ q) ∧ (r↔ false)

and ¬p is not a three-valued consequence of P2’s completion. Therefore, we
need to provide extra-conditions to the folding rule in order to preserve the
Clark-Kunen semantics, but these extra-conditions would be unnecessary if we
considered the well-founded semantics.

There are many proposals for extending Tamaki and Sato’s system (see [29])
for dealing with different semantic notions of negation. Seki (see [27]) showed
that the system in [29] does not preserve finite-failure and introduced a modified
folding rule that preserves finite failure and perfect model semantics in stratified
normal programs. An extension of this system for general logic programs and for
well-founded semantics was presented in [28]. The folding rule of [29] was also
generalized in [15] to a simultaneous folding rule. Maher (see [22]) also extended
the system to stratified general programs and the perfect model semantics. A
more recent work on preserving stable and well-founded model semantics is [24].1

In fact, as shown in Example 1, all these transformation systems do not preserve,
in general, the Clark-Kunen semantics. Regarding the systems designed to pre-
serve some completion-related semantics (see [21,13,5]), they enforce very rigid
transformations. Indeed, they disable some useful transformations which do not
spoil correctness w.r.t. the Clark-Kunen semantics, as illustrated in the next
example.

Example 2. Given the following definition of a predicate q such that q(x1, x2)
checks whether the list x1 is not a sublist of x2

1. q(x1, x2)← member(y, x1), ¬member(y, x2)
2. member(v, [v|])←
3. member(v1, [|v2])← member(v1, v2) .

1 It is well known that the well-founded model is one of the stable models, which is
minimal in some sense.

182 J. Álvez and P. Lucio

First, we unfold member(y, x1) in clause 1 w.r.t. clauses 2 and 3

4. q([z1|], z2)← ¬member(z1, z2)
5. q([|z1], z2)← member(w, z1), ¬member(w, z2) .

Then, we fold clause 5 using clause 1, which has been removed in the previous
step. The resulting definition of q is

4. q([z1|], z2)← ¬member(z1, z2)
6. q([|z1], z2)← q(z1, z2) . ��

The transformation in Example 2 is forbidden in all the existing systems which
consider completion-related semantics, in spite of the fact that it is correct w.r.t.
the Clark-Kunen semantics. For example, the so-called reversible folding requires
the folded and folder clauses to be in the current program. This is the folding used
in [21,13]. In the above Example 2, the folder clause is not in the current program,
hence the systems in [21,13] cannot be used. In [5], folding is allowed through the
use of semantic conditions if the folded clause comes from the folder one, which
has to be non-recursive, and all the literals to be folded have been obtained by
unfolding. In Example 2, the literal2 ¬member(w, z2) is inherited from the original
program, thus it is not the result of an unfolding step. Other systems split the
predicates into new/old predicates, where the old predicates cannot depend on
the new predicates and the new predicates are non-recursive. This is case in the
previously cited system in [27] where the following two conditions are required:

(1) only the clauses with a new predicate in its head can be used as folder clauses,
and

(2) the predicate in the head of the folded clause is an old predicate or all the
literals to be folded are the result of a previous unfolding.

In Example 2, the predicate in the head of the folder and folded clause is the
same (that is, the predicate q), thus we cannot use the system in [27] since
¬member(w, z2) is inherited from the original program. The four-step transfor-
mation schema proposed in [6] uses the same partition of predicates, and, once
again, when the predicate in the head of the folded clause is new, all the literals
to be folded have to be the result of an unfolding, therefore this system cannot
be used in Example 2. Finally, the folding rule in the system proposed in [25]
for first-order general programs, which also uses the new/old partition,3 requires
the same condition.

In this paper, we introduce a transformation system for normal logic programs
that preserves the Clark-Kunen semantics and is more flexible than the existing
ones with the following two advantages:

1. the folder clause can be taken from any program in the transformation se-
quence.

2. the folded literals do not necessarily come from unfolding.
2 The negative character of the literal is not relevant for this discussion.
3 By contrast, the new predicates can be recursive in this proposal.

A Generalization of the Folding Rule for the Clark-Kunen Semantics 183

Outline of the paper. In the next section, Section 2, which is split in three sub-
sections, we establish the notations and describe necessary results on semantics
of logic programs and unfold/fold systems. Section 3 is devoted to defining new
conditions for the folding rule, where we motivate the problem using some ex-
amples and we then prove the correctness of the resulting system. In Section 4,
we give some concluding remarks and indicate some of the open problems which
need to be solved. The interested reader is referred to [1] for an extended version
of this paper, where we provide the formal proofs of Lemma 1 and Theorems 3
and 4.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of logic program-
ming. Throughout the paper we use the standard terminology of [19] and [3]. In
particular, we will use the standard notions of substitution of variables by terms,
unifier and most general unifier (briefly mgu). A bar is used to abbreviate tuples
of objects. For example, x denotes a tuple of variables x1, . . . , xn, the tuple of lit-
erals L1, . . . , Ln is denoted by L and the substitution σ = {x1 ← t1, . . . , xn ←
tn} is abbreviated as {x ← t}. Besides, σ is sometimes interpreted as the con-
junction of equations x1 ≈ t1 ∧ . . .∧ xn ≈ tn (abbreviated as x ≈ t), and hence
¬σ is interpreted as the disjunction of disequations x1 	≈ t1 ∨ . . . ∨ xn 	≈ tn
(abbreviated as x 	≈ t).

We consider (normal) logic programs which are finite sequences (not sets) of
normal clauses of the form A ← L. Throughout this work, programs are given
modulo reordering of the literals in bodies and standardization apart is always
assumed.

The definition of the atom L in a program P , denoted by DefP [L], is the
sequence of clauses from P such that its clause head unifies with L. If L is a flat
atom on the predicate p, then we also say that DefP [L] is the definition of the
predicate p.

We use the classical notion of resolution as defined in [17]. A goal (K, L, M)
resolves to (K, N, M)θ, denoted by (K, L, M) =⇒ (K, N, M)θ, if there
exists a clause H ← N ∈ DefP [L] such that θ = mgu(H, L). A derivation from
L

0
to L

n
, denoted by L

0
=⇒∗L

n
, is a sequence of n resolution steps L

0
=⇒

L1 =⇒ . . . =⇒ L
n−1

=⇒ L
n
.

An atom L directly depends on the atom N in a program P iff there exists a
clause (H ← B) ∈ DefP [L] such that N ∈ B. Besides, L is also said to directly
depend on every clause in DefP [L]. The dependence relation on atoms/clauses is
given by the reflexive and transitive closure of the directly dependence relation.

2.1 The Clark-Kunen Semantics and Non-failure

In [9], Clark proposed the following to complete the definition of predicates.
Supposing that DefP [p(x)] consists of the following m clauses 〈 p(tk)← B

k | 1 ≤
k ≤ m 〉, the completion formula of a predicate p ∈ PredL(P) is

184 J. Álvez and P. Lucio

(p(x) ↔
m∨

k=1

∃zk (x ≈ t
k ∧B

k
))∀ (1)

where zk = Var(tk · Bk
) for each 1 ≤ k ≤ m. If m = 0, then it is equivalent to

(p(x) ↔ false)∀. The Clark completion of a program P , denoted by Comp(P),
consists of the conjunction of the completion formulas of each predicate p ∈
PredL(P) and the axioms of the free equality theory FETL (see [10]). Whenever
the definition of p is free of local variables, the negation of (1)

(¬p(x) ↔
m∧

k=1

∀zk (x 	≈ t
k ∨ ¬Bk

))∀

can be transformed (see [26,4]) into a logically equivalent formula of the form

(¬p(x) ↔
n∨

h=1

∃wh (x ≈ sh ∧M
h

))∀.

From this formula, we obtain a finite sequence of expressions

〈 ¬p(sh)←M
h | 1 ≤ h ≤ n 〉

which yields DefP [¬p(x)]. Otherwise, if some clause in DefP [p(x)] contains local
variables, then we consider that DefP [¬p(x)] is undefined, i.e. ¬p(x) has no
definition. Once we have a definition for negative literals, the dependence relation
is extended to negative literals in the natural way.

Example 3. Let us consider the following definition of the predicate member

1. member(v, [v|])←
2. member(v1, [|v2])← member(v1, v2) .

The completion formula of member is

(member(x1, x2)↔ ∃v, v′ (x1 ≈ v ∧ x2 ≈ [v|v′]) ∨
∃v1, v2, v

′′ (x1 ≈ v1 ∧ x2 ≈ [v′′|v2] ∧member(v1, v2)))∀.

From the above formula, we obtain

(¬member(x1, x2)↔ ∀v, v′ (x1 	≈ v ∨ x2 	≈ [v|v′]) ∧
∀v1, v2, v

′′ (x1 	≈ v1 ∨ x2 	≈ [v′′|v2] ∨ ¬member(v1, v2)).

Refining the right-hand subformula, we get

(¬member(x1, x2)↔ [∀v′ (x2 	≈ [x1|v′]) ∧ ∀v2, v
′′ (x2 	≈ [v′′|v2])] ∨

[∀v′ (x2 	≈ [x1|v′]) ∧
∃v1, v2, v

′′ (x1 ≈ v1 ∧ x2 ≈ [v′′|v2] ∧ ¬member(v1, v2))

A Generalization of the Folding Rule for the Clark-Kunen Semantics 185

which is, after simplification, equivalent to

(¬member(x1, x2)↔ ∃z1, z2 (x1 ≈ z1 ∧ x2 ≈ z2 ∧ ∀y1, y2 (z2 	≈ [y1|y2])) ∨
∃z1, z2, z3 (x1 ≈ z1 ∧ x2 ≈ [z2|z3] ∧ z1 	≈ z2 ∧

¬member(z1, z3)).

Since the second argument of member is a list from the last formula we can
obtain the following normal4 clauses that define ¬member

3. ¬member(, [])←
4. ¬member(w1, [w2|w3])← w1 	≈ w2, ¬member(w1, w3) . ��

In this work, the semantics given to a program is the Clark-Kunen semantics as
proposed in [18]; that is, the three-valued logical consequence of the Clark com-
pletion. Following [23], the Clark-Kunen semantics of a program P is defined by

COMP[P,← L] = { c | Comp(P) |=3 (L ∧ c)∀ }

where ← L is a goal, c is a general equality constraint and |=3 stands for the
three-valued logical consequence relation, as defined in [18]. Regarding equiv-
alence of programs, we consider that two programs P1 and P2 are equivalent,
denoted by P1 ≡ P2, iff the set of logical consequences of Comp(P1) and Comp(P2)
are identical.

Definition 1. Given two programs P1 and P2,

(i) P1 � P2 iff COMP[P1,← L] ⊆ COMP[P2,← L] for any goal ← L.

(ii) P1 ≡ P2 iff P1 � P2 and P2 � P1. ��
A desirable property of a semantic notion is relevance, which is defined in [12]
and extensively used in [23]. Intuitively, a semantics is relevant iff the semantic
value of any goal ← L w.r.t. a program P is exactly given by the clauses on
which the literals in L depend. In the absence of relevance, some transformation
rules, such as new definition and deletion, are not trivially correct (see [23]).
As defined above, the Clark-Kunen semantics is relevant. However, by changing
|=3 by the classical bi-valued logical consequence notion (as in [23]), relevance is
lost.

Finally, we define the class of goals that do not fail on some variables.

Definition 2. Let P be a program, ← L a goal and x ⊆ Var(L). The goal ← L
is non-failing on x w.r.t. P iff for all substitution σ of domain x and any fair
literal selection rule there exists a derivation starting from ← Lσ that does not
fail. ��

Next, we illustrate the notion of non-failing goals with two examples.

4 w1 �≈ w2 is a negative literal since ≈ should be defined by the single clause x ≈ x ←.

186 J. Álvez and P. Lucio

Example 4. Let us consider the following program

1. add(0, n, n)
2. add(s(n1), n2, s(n3))← add(n1, n2, n3) .

The literal add(x1, x2, x3) is non-failing on the variables {x1, x2}. However, the
literal add(x1, x2, x3) is failing on {x2, x3}. ��
Example 5. Let us consider the following program

1. ack(0, n, s(n))
2. ack(s(n1), 0, n2)← ack(n1, s(0), n2)
3. ack(s(n1), s(n2), n3)← ack(s(n1), n2, y), ack(n1, y, n3) .

The goal ack(s(x1), x2, v), ack(x1, v, x3) is non-failing on {x3} . ��
The interested reader is referred to [11] for details on algorithms that decide if a
goal is non-failing. Roughly speaking, given a goal G and a set x of its variables,
the algorithm checks whether the set of constraints associated to all the non-
failing goals that can be obtained by resolution from G covers all the possible
values for x. According to [11], the covering problem is co-NP-hard.

2.2 Unfold-Fold Transformation Systems

In this section, we recall the classical unfold/fold transformation rules that were
introduced in [29], adapting them to our notation. We also provide some well-
known correctness results that we will use later.

A sequence of programs 〈P0, . . . , Pn〉 is a transformation sequence if for
each 1 ≤ i ≤ n, Pi is the result of transforming Pi−1 using some rule. Besides,
〈P0, . . . , Pn〉 is correct if P0 and Pi are equivalent for every 1 ≤ i ≤ n. By
extension, a transformation rule is said to be correct if it preserves equivalence.

Program transformation systems usually work with some information related
to the transformation process itself. For example, in à la Tamaki-Sato systems
(see [28,29]), the clauses that are obtained after unfolding are marked “foldable”.
In [25], literals (instead of clauses) are marked “foldable”. In other systems (see
[16]), counters of unfolding/folding steps are associated with clauses in order to
both formulate folding applicability conditions and to characterize the improve-
ment of execution. In this paper, we associate two natural numbers 〈Lunf, Lfld〉
with each body literal L, called unfolding and folding time-stamps. A time-stamp
Lunf / Lfld is either zero or the index i of the program Pi in the transforma-
tion sequence 〈P0, . . . , Pn〉 in which L is obtained by unfolding/folding. Hence,
in the initial program P0, all time-stamp are zero and they are appropriately
updated at each transformation step.

Before recalling the usual rules in unfold/fold systems, let us fix the following
conventions that we will use in the formulation of the transformation rules:

(1) we always refer to a transformation sequence 〈P0, . . . , Pi〉,
(2) Pi+1 is the next program obtained by the transformation from Pi, and

A Generalization of the Folding Rule for the Clark-Kunen Semantics 187

(3) if a clause C has not been transformed from Pi to Pi+1, then the time-stamps
for the literals in C are equal in both programs.

Next, we re-formulate unfold/fold systems incorporating time-stamps issues.

Rule 1. New Definition. If p 	∈ ⋃i
j=0 PredL(Pj) and S = 〈C1, . . . , Cm〉 is

a definition of the predicate p such that PredL(S) ⊆ (PredL(Pi) ∪ {p}), then
Pi+1 = Pi ∪ S. The pair of time-stamps 〈Lunf, Lfld〉 is 〈0, 0〉 for every literal
L occurring in the body of any clause from S.

Rule 2. Unfolding. If C = H ← M, L is a clause in Pi (unfolded clause) and
DefPj [L] = 〈 Lk ← N

k | 1 ≤ k ≤ m 〉 for some 0 ≤ j ≤ i, then Pi+1 =

(Pi \ C) ∪ 〈 (H ← M, N
k
)θk | 1 ≤ k ≤ m 〉 where θk = mgu(L, Lk) for every

1 ≤ k ≤ m. For every clause (H ←M, N
k
)θk in the program Pi+1, the pair of

time-stamps 〈N ′
unf, N

′
fld〉 is 〈i+1, Lfld〉 for each literal N ′ ∈ N

k
θk and, besides,

the pair 〈M ′
unf, M

′
fld〉 is equal to 〈Munf, Mfld〉 in Pi for each M ′ = Mθk ∈Mθk.

If Pi = Pj and the unfolded clause (H ← M, L) ∈ DefPj [L], then the Unfolding
transformation is said to be a self-unfolding.

Rule 3. Folding. If H ← M, N is a clause in Pi (folded clause), L ← N
′
is a

clause in Pj (folder clause) for some 0 ≤ j ≤ i and σ is a substitution such that

(a) domain(σ) = Var(L),
(b) H ←M, N and H ←M, N

′
σ are equal modulo variable renaming,

(c) L← N
′
is the only clause in Pj whose head is unifiable with Lσ,

then Pi+1 = (Pi \ (H ←M, N)) ∪ (H ←M, Lσ). The pair of time-stamps
〈Lσunf, Lσfld〉 is 〈0, i + 1〉. Besides, the pair 〈Munf, Mfld〉 in Pi+1 is equal to
〈Munf, Mfld〉 in Pi for each M ∈M .

Rule 4. Deletion. If S is the definition of the predicate p in Pi, p 	∈ PredL(P0)
and p 	∈ PredL(Pi \ S), then Pi+1 = (Pi \ S).

Note that the above rules can be used only if the definition of the involved literals
exists. The definition of every positive literal always exists, but this is not the
case for negative literals.

Using the above set of rules, an unfold/fold transformation system that pre-
serves the Clark-Kunen semantics was introduced in [13].

Theorem 1. [13] If 〈P0, . . . , Pn〉 is a transformation sequence that is obtained
using the rules New Definition, Unfolding, Folding and Deletion with the following
two restrictions for each 0 ≤ i ≤ n− 1

– Unfolding is applied at the step i + 1 only if it is not self-unfolding and the
definition of the unfolded literal is taken from Pi,

– Folding is applied at the step i + 1 only if the folder clause is taken from Pi

and is different from the folded one,

then P0 and Pj are equivalent for every 0 ≤ j ≤ n.

188 J. Álvez and P. Lucio

Proof. A formal proof of this result can be found in [13]. In fact, the authors
provide a stronger result there since they prove the preservation of equivalence
w.r.t. completion semantics. In particular, the rules New Definition and Deletion
are correct since the Clark-Kunen semantics and completion semantics are rele-
vant. ��
In the above unfold/fold transformation system, self-unfolding is not allowed.
Next, we show that it is possible to prove the correctness w.r.t. the Clark-Kunen
semantics if we allow self-unfolding. However, it is well known that self-unfolding
does not preserve completion semantics (see [21]); that is, the logical equivalence
between programs’ completion.

Lemma 1. Let 〈P0, . . . , Pi〉 be a correct transformation sequence. If the pro-
gram Pi+1 is obtained by self-unfolding, then Pi+1 ≡ Pj for every 1 ≤ j ≤ i.

The next theorem is a direct consequence of Theorem 1 and Lemma 1.

Theorem 2. If 〈P0, . . . , Pn〉 is a transformation sequence that is obtained
using the rules New Definition, Unfolding, Folding and Deletion with the following
two restrictions for each 0 ≤ i ≤ n− 1

– Unfolding is applied at the step i + 1 only if the definition of the unfolded
literal is taken from Pi,

– Folding is applied at the step i + 1 only if the folder clause is taken from Pi

and is different from the folded one,

then P0 and Pj are equivalent for every 0 ≤ j ≤ n.

However, Example 2 shows a natural way for obtaining a recursive definition
that cannot be obtained by the system described in Theorem 2.

3 Generalized Folding

In this section, we introduce less restrictive conditions for the rule Folding than
the ones in Theorem 2. Our main aim is twofold. First, we will allow the
folder clause to be taken from any program in the transformation sequence
〈P0, . . . , Pi〉. Second, we relax the requirement that every folded literal should
come from unfolding. In our proposal, this condition is combined with a non-
failure requirement of the literals that do not come from unfolding.

If the folder clause comes from the actual program Pi, then Theorem 2 only
requires the folder and the folded clause to be different, because the so-called
self-folding is clearly incorrect. Note that the result of folding a clause p ← r
with itself is p← p. Besides, when the folder clause could come from a program
Pj where 0 ≤ j < i, the self-folding transformation sometimes involves several
clauses, which makes difficult to detect it. As a consequence, applicability con-
ditions must be carefully designed to avoid problems related to the self-folding.
The following example tries to illustrate this kind of problems.

A Generalization of the Folding Rule for the Clark-Kunen Semantics 189

Example 6. Let us consider the following transformation sequence.

P0 : 1. p← r 2. q ← r 3. r ←
(by folding r in the clause 1 using the clause 2 of P0)

P1 : 4. p← q 2. q ← r 3. r ←
(by folding r in the clause 2 using the clause 1 of P0)

P2 : 4. p← q 5. q ← p 3. r ←.

The first two programs are trivially equivalent. However, the goal ← p loops in
P2, whereas it succeeds in the programs P0 and P1. ��
In order to prove that a transformation rule preserves equivalence we have to
ensure that Pi+1 � Pi and Pi � Pi+1. In Theorem 3, we show that Pi+1 � Pi

holds whenever Pi+1 is obtained by Folding from Pi.

Theorem 3. Let 〈P0, . . . , Pi〉 be a correct transformation sequence. If the pro-
gram Pi+1 is obtained by the rule Folding, then Pi+1 � Pj for every 1 ≤ j ≤ i.

However, when allowing use of a folder clause from any program in the trans-
formation sequence, additional conditions are necessary in order to accomplish
that Pi � Pi+1. We formulate (in Theorem 4) side conditions for the Folding rule
that depend on the literal that is introduced by Folding. To that end, we first
introduce the following notion of fold-partitioned goals.

Definition 3. Let 〈P0, . . . , Pj , . . . , Pi〉 be a transformation sequence and
(H ← M, N) ∈ Pi, (L ← N

′
) ∈ Pj be two clauses such that N = N

′
σ. The

goals ← N and ← N
′
are fold-partitioned by j into ← A, B and ← A

′
, B

′
iff

– Nfld ≤ j for every N ∈ N ,
– Bunf > j for every B ∈ B,
– no literal in B

′
depends on L in Pj. ��

Now, we can formulate the side conditions for Folding in Theorem 4.

Theorem 4. If 〈P0, . . . , Pn〉 is a transformation sequence that is obtained
using the rules New Definition, Unfolding, Folding and Deletion with the following
restrictions for each 0 ≤ i ≤ n− 1

– Unfolding is applied at step i + 1 only if the definition of the unfolded literal
is taken from Pi.

– Folding is applied at the step i+1 if the folded clause (H ←M, N) ∈ Pi and
the folder clause (L ← N

′
) ∈ Pj such that 0 ≤ j ≤ i and σ = mgu(N, N

′
)

satisfies one of the following conditions:
(1) i = j and the folded clause is different from the folder one.
(2) i > j and the literal Lσ does not depend on H in the program Pi.
(3) i > j, H and L are unifiable, ← N is fold-partitioned by j into ← A, B

and A is non-failing on Var(Lσ).

Then, P0 and Pk are equivalent for every 0 ≤ k ≤ n.

190 J. Álvez and P. Lucio

In the above theorem, condition (1) is given by Theorem 2. In condition (2), the
literal introduced by Folding does not depend on the head of the folded clause in
the program Pi. Condition (2) is illustrated by means of the following example.

Example 7. Given the following program P1

1. add(0, n, n)←
2. add(s(n1), n2, s(n3)← add(n1, n2, n3)
3. add3(n1, n2, n3, n4)← add(n1, n2, y), add(y, n3, n4) .

First, we unfold the literal add(n1, n2, y) in clause 3, obtaining

4. add3(0, n2, n3, n4)← add(n2, n3, n4)
5. add3(s(n1), n2, n3, n4)← add(n1, n2, y), add(s(y), n3, n4)

and then we unfold the literal add(s(y), n3, n4) in clause 5, which yields

6. add3(s(n1), n2, n3, s(n4))← add(n1, n2, y), add(y, n3, n4).

Second, we fold the literals 〈add(n1, n2, y), add(y, n3, n4)〉 in clause 6 using
clause 3. Note that this transformation preserves equivalence according to Condi-
tion 3, since both literals have been obtained by Unfolding and, hence, A denotes
the empty tuple. The resulting clause is

7. add3(s(n1), n2, n3, s(n4))← add3(n1, n2, n3, n4)

in the program P2 = 〈1, 2, 4, 7〉. Third, we introduce a new predicate add4/5

defined by the single clause

8. add4(n1, n2, n3, n4, n5)← add(n1, n2, y1), add(y1, n3, y2),
add(y2, n4, n5)

and obtain the program P3 = P2 ∪ {8}. By means of Condition (2), the body
literals 〈add(n1, n2, y1), add(y1, n3, y2)〉 in clause 8 can be folded using clause 3
in the program P1 and the resulting literal is add3(n1, n2, n3, y2), which does not
depend on add4(n1, n2, n3, n4, n5) in the program P3. Hence, the final
program is

1. add(0, n, n)←
2. add(s(n1), n2, s(n3)← add(n1, n2, n3)
4. add3(0, n2, n3, n4)← add(n2, n3, n4)
7. add3(s(n1), n2, n3, s(n4))← add3(n1, n2, n3, n4)
9. add4(n1, n2, n3, n4, n5)← add3(n1, n2, n3, y2), add(y2, n4, n5) . ��

It could be argued that there exists a reordering of the above transformation
sequence in such a way that the system described in Theorem 2 allows to fold
the literals 〈add(n1, n2, y1), add(y1, n3, y2)〉 in the definition of add4/5: in this
case, it would be enough to introduce add4/5 and fold its body literals before
transforming the definition of sum3/4. However, such a restriction in the order of
rule application unnecessarily complicates some transformation sequences, which
may involve a large number of clauses.

A Generalization of the Folding Rule for the Clark-Kunen Semantics 191

Regarding condition (3), it is worthwhile to remark that its combination with
condition (c) of Folding (that is, the literal introduced by Folding only unifies
with the head of the folder clause in the program Pj) ensures that the folded
clause has been obtained exclusively by unfolding transformations from the folder
clause. Otherwise, if the folded clause is not obtained from the folder one, then
the introduced literal would unify with the head of at least two clauses in Pj .
Condition (3) corresponds to Examples 2 and 6, where the new literal depends
on the clause head in Pi. Note that Example 6 does not satisfy Condition 3 since
q and p do not unify. Besides, as we have already mentioned in Example 7, if
A is an empty tuple (that is, all the literals in the folded clause comes from
Unfolding), then the Folding rule using condition (3) is very similar to the one in
the proposals [6,25], where the authors also require all the literals to come from
an unfolding to allow folding.

Next, we show that the transformation in Example 2 can be performed using
the system in Theorem 4.

Example 2 (Contd.). From the initial program P0 = 〈1, 2, 3〉, we obtain P1 =
〈2, 3, 4, 5〉 by unfolding member(y, x1) in clause 1 using the clauses 2 and 3.
Then, Theorem 4 allows the folding of the body

〈member(w, z1), ¬member(w, z2)〉

of clause 5 using clause 1 by means of the third condition in Folding . First, the
head of the folder and the folded clause, which are taken from different programs
(P1 and P0 respectively), unify. Second, the literal member(w, z1) has been ob-
tained by unfolding from P0. Finally, the literal ¬member(w, z2), which has not
been obtained by unfolding, is non-failing on z2

5 according to the definition of
¬member in Example 3. That is, there always exists a value for w such that the
goal ← ¬member(w, z2) does not fail. ��
Note that if the literal ¬member(w, z2) were failing on z2, then the goal ←
q(x1, x2) would fail in P0, whereas q(x1, x2) could not fail in P2. That is the case
in Example 1, where the literal r is failing and, thus, the goal ← p fails in the
program P0 and cycles in P2.

The following example shows a transformation using the system in Theorem
4 that is mentioned in [27] as an example of unfeasible transformation under the
system proposed in that paper.

Example 8. Let FL = {a/0, b/0, c/0} and P0 be the following program

1. reach(x, y)← arc(x, y)
2. reach(x, y)← arc(x, w), reach(w, y)
3. br(x, y, z)← reach(x, z), reach(y, z)
4. arc(a, b)
5. arc(b, c)
6. arc(c, a) .

5 The variable z1 from q(z1, z2) is omitted since it does not occur in ¬member(w,z2).

192 J. Álvez and P. Lucio

First, we unfold the literal reach(x, z) in the clause 3 using the clauses 1 and 2.
The resulting program is P1 = 〈1, 2, 7, 8, 4, 5, 6〉 where

7. br(x, y, z)← arc(x, z), reach(y, z)
8. br(x, y, z)← arc(x, w), reach(w, z), reach(y, z) .

Then, Theorem 4 allows the folding of literals 〈reach(w, z), reach(y, z)〉 in clause
8 using clause 3 and obtaining the literal br(w, y, z), since reach(w, z) has been
obtained by unfolding from clause 3 and reach(y, z), which is inherited from
clause 3, is non-failing on 〈y, z〉. Note that reach(y, z) cannot fail since all the
nodes a, b and c are reachable from any node. The resulting program is P2 =
〈1, 2, 7, 9, 4, 5, 6〉 where

9. br(x, y, z)← arc(x, w), br(w, y, z)

which is equivalent to the programs P0 and P1.
Now, let us consider the program P ′

0 = 〈1, 2, 3, 4, 5, 6′〉 where

6’. arc(c, b).

As before, by unfolding reach(x, z) in the clause 3 using the clauses 1 and
2, we obtain the program P ′

1 = 〈1, 2, 7, 8, 4, 5, 6′〉. However, we cannot fold
〈reach(w, z), reach(y, z)〉 in the clause 8 using the clause 3 since reach(y, z),
which is inherited from P ′

0, is failing on 〈y, z〉; for example, a is not reachable
from b.

It is worth noting that the non-failing condition, which depends on the facts
arc(,), makes the first transformation possible but not the second one. Thus,
we allow only the transformations that are correct w.r.t. the graph. However,
in [27] any transformation of this kind is forbidden irrespectively of the graph
definition. ��

4 Conclusions and Future Work

We have introduced syntactic conditions for the rule Folding under which un-
fold/fold systems perform new kinds of transformations. In particular, the new
conditions enable us to obtain recursive definitions and to remove local variables.
This is possible because we allow the use of folder clauses from any program in
the transformation sequence. The proposed transformation system is applicable
to the whole class of normal logic programs and it is worth noting that only the
negative literals without definition (due to the presence of local variables in the
definition of its positive counterparts) cannot be used by Unfolding and Folding.

The need for providing new applicability conditions for the rule Folding has
been motivated by means of some examples that show the risk of allowing trans-
formations which use removed clauses. In this paper, we have concentrated on
the rule Folding. However, similar problems arise in other transformation rules,
such as Unfolding. For example, if we allowed unfolding by using definitions in
previous programs, then the following transformation sequence could be obtained

A Generalization of the Folding Rule for the Clark-Kunen Semantics 193

P0 : p← q q ← r r←
(by unfolding q in the 2nd clause using the definition in P0)

P1 : p← r q ← r r←
(by folding h in the 3rd clause using the 2nd clause)

P2 : p← r q ← p r←
(by unfolding p in the 3rd clause using the definition in P0)

P3 : p← r q ← q r←
Clearly, the last program is not equivalent to any of the previous ones (even w.r.t.
the least Herbrand model), because the goal← q loops instead of succeeding. To
find syntactic conditions that ensure correctness when using clauses from any
program in the transformation sequence in other transformations rules (such as
Unfolding, Replacement, etc.) is an interesting open problem.

References

1. Álvez, J., Lucio, P.: A generalization of the folding rule for the clark-kunen se-
mantics. Technical Report UPV-EHU/LSI/TR 01-2008, Dept. of Languages and
Information Systems. Basque Country University (January, 2008)

2. Álvez, J., Lucio, P., Orejas, F., Pasarella, E., Pino, E.: Constructive negation by
bottom-up computation of literal answers. In: Haddad, H., Omicini, A., Wain-
wright, R.L., Liebrock, L.M. (eds.) Proceedings of the 2004 ACM Symposium on
Applied Computing (SAC), pp. 1468–1475 (2004)

3. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science.
Formal Models and Sematics (B), vol. B, pp. 493–574. Elsevier, Amsterdam (1990)

4. Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F.: A transformational approach
to negation in logic programming. J. Log. Program. 8(3), 201–228 (1990)

5. Bossi, A., Cocco, N., Etalle, S.: Simultaneous replacement in normal programs. J.
Log. Comput. 6(1), 79–120 (1996)

6. Bossi, A., Etalle, S.: More on unfold/fold transformations of normal programs:
Preservation of fitting’s semantics. In: Fribourg, L., Turini, F. (eds.) LOPSTR
1994 and META 1994. LNCS, vol. 883, pp. 311–331. Springer, Heidelberg (1994)

7. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

8. Chan, D.: Constructive negation based on the completed database. In: Kowalski,
R.A., Bowen, K.A. (eds.) Proceedings of the Fifth International Conference and
Symposium on Logic Programming, pp. 111–125. MIT Press, Cambridge (1988)

9. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1978)

10. Comon, H., Lescanne, P.: Equational problems and disunification. J. Symb. Com-
put. 7(3/4), 371–425 (1989)

11. Debray, S.K., López-Garćıa, P., Hermenegildo, M.V.: Non-failure analysis for logic
programs. In: Naish, L. (ed.) Logic Programming. Proceedings of the Fourteenth
International Conference on Logic Programming, Leuven, Belgium, July 8-11, 1997,
pp. 48–62. MIT Press, Cambridge (1997)

12. Dix, J.: A classification theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform. 22(3), 257–288 (1995)

194 J. Álvez and P. Lucio

13. Gardner, P.A., Shepherdson, J.C.: Unfold/fold transformations of logic programs.
In: Computational Logic - Essays in Honor of Alan Robinson, pp. 565–583 (1991)

14. Van Gelder, A., Ross, K., Schlipf, J.S.: Unfounded sets and well-founded seman-
tics for general logic programs. In: PODS 1988: Proceedings of the seventh ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp.
221–230. ACM Press, New York, NY, USA (1988)

15. Gergatsoulis, M., Katzouraki, M.: Unfold/fold transformations for definite clause
programs. In: Penjam, J. (ed.) PLILP 1994. LNCS, vol. 844, pp. 340–354. Springer,
Heidelberg (1994)

16. Kanamori, T., Fujita, H.: Unfold/fold transformation of logic programs with coun-
ters. Technical Report TR-179, ICOT Institute for New Generation Computer
Technology (1986)

17. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp.
569–574 (1974)

18. Kunen, K.: Negation in logic programming. J. Log. Program. 4(4), 289–308 (1987)
19. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
20. Lucio, P., Orejas, F., Pino, E.: An algebraic framework for the definition of com-

positional semantics of normal logic programs. J. Log. Program. 40(1), 89–124
(1999)

21. Maher, M.J.: Correctness of a logic program transformation system. Technical
Report RC 13496, IBM T.J. Watson Research Center (1988)

22. Maher, M.J.: A tranformation system for deductive databases modules with perfect
model semantics. Theor. Comput. Sci. 110(2), 377–403 (1993)

23. Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Gabbayand,
D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelli-
gence and Logic Programming, vol. 6, pp. 697–787. Oxford University Press, Oxford
(1998)

24. Roychoudhury, A., Kumar, K.N., Ramakrishnan, C.R., Ramakrishnan, I.V.: Be-
yond tamaki-sato style unfold/fold transformations for normal logic programs. Int.
J. Found. Comput. Sci. 13(3), 387–403 (2002)

25. Sato, T.: Equivalence-preserving first-order unfold/fold transformation systems.
Theor. Comput. Sci. 105(1), 57–84 (1992)

26. Sato, T., Tamaki, H.: Transformational logic program synthesis. In: Proceedings of
the International Conference on Fifth Generation Computer Systems, pp. 195–201
(1984)

27. Seki, H.: Unfold/fold transformations of stratified programs. Theor. Comput.
Sci. 86(1), 107–139 (1991)

28. Seki, H.: Unfold/fold transformation of general logic programs for the well-founded
semantics. J. Log. Program. 16(1), 5–23 (1993)

29. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund,
S.-Å. (ed.) Proceedings of the Second International Logic Programming Confer-
ence, Uppsala University, Uppsala, Sweden, pp. 127–138 (1984)

Types for Hereditary Head Normalizing Terms

Makoto Tatsuta

National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

tatsuta@nii.ac.jp

Abstract. Klop’s Problem is finding a type for characterizing heredi-
tary head normalizing terms, that is, lambda-terms whose Böhm trees
do not contain the bottom. This paper proves that this problem does
not have any solution by showing that the set of those terms is not re-
cursively enumerable. This paper also gives a best-possible solution by
providing an intersection type system with a countably infinite set of
types such that typing in all these types characterizes hereditary head
normalizing terms. By using the same technique, this paper also shows
that the set of lambda-terms normalizing by infinite reduction is not
recursively enumerable.

1 Introduction

Klop’s Problem [4] is finding a type that characterizes the set of hereditary
head normalizing terms, that is, λ-terms whose Böhm trees do not contain the
bottom. This question expects that there is some type system T with some
type A such that M : A is provable in T if and only if M is hereditary head
normalizing. When we study infinite computation by using λ-calculus, Böhm
trees give computational meaning to non-normalizing λ-terms. Then the bottom
means non-informative computation, and a hereditary head normalizing term
is a nice term that does not contain any meaningless computation. It is an
interesting subject to find a type-theoretic characterization of terms having a
nice property [3,9]. So finding a type-theoretic characterization of hereditary
head normalizing terms is an important subject. Several researchers in European
theoretical computer science community have been trying to answer this question
for several years [4].

We will show that Klop’s Problem does not have any solution, and give a
best-possible solution. By using the same technique used to show the first claim,
we will also show that the set of λ-terms normalizing by infinite reduction is not
recursively enumerable.

To show the first claim, we will show that the set of hereditary head nor-
malizing terms is not recursively enumerable. For each unary primitive recursive
function f , we will construct a λ-term whose Böhm-tree computes the values
f(0), f(1), f(2), . . . so that the term is hereditary head normalizing if and only
if f is positive, that is, f(x) > 0 for all x. The set of positive primitive recursive
functions is proved to be not recursively enumerable since it solves the halting
problem.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 195–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

196 M. Tatsuta

To show the second claim, we will think the set HNn of λ-terms whose Böhm
trees do not contain the bottom at depth less than n, and we will give some type
pn that characterizes HNn. We use axioms for type constants and type preorder
so that our intended model will interpret those constants by the least fixed
points of those axioms. We will also need intersection types because of subject
expansion [1]. Then we have a characterization of hereditary head normalizing
terms by the set of the types pn because a λ-term is hereditary head normalizing
if and only if this term has the type pn for all n.

A formal system for infinite computation has been studied actively [10]. Infi-
nite λ-calculus [6,2] is an important subject among those formal systems. Infinite
λ-calculus gives a theoretical foundation to infinite computation in functional
programming languages, as finite λ-calculus did for finite computation in func-
tional programming languages.

The set of λ-terms normalizing by infinite reduction is a fundamental notion
in infinite λ-calculus. By applying the tree construction for the first claim to
infinite λ-calculus, for each primitive recursive function f , we will construct a
λ-term whose reducts compute the values f(0), f(1), f(2), . . . so that the term
has a normal form by infinite reduction if and only if f is positive. By this,
we can show that the set of λ-terms normalizing by infinite reduction is not
recursively enumerable.

There have been two papers [8] and [7] on Klop’s Problem. [8] gave a sufficient
condition for hereditary head normalizing terms by using a type system. [7] gave
the type system Λ∨� and the types an that characterize HNn. We found our
system independently from his paper and our system is simpler than his system.
Though his system was another best-possible solution, the relationship between
his result and the solution of Klop’s Problem has not been discussed, because
we did not know that there was no solution for Klop’s Problem.

Section 2 defines hereditary head normalizing terms, and describes Klop’s
Problem. Section 3 shows that the set HHN of hereditary head normalizing terms
is not recursively enumerable, and there does not exist any solution for Klop’s
Problem. We will discuss set theoretic properties of HHN in Section 4. Section 5
gives the set of types that characterizes HHN. The soundness is shown in Section
6 and the completeness is proved in Section 7. In Section 8, we discuss infinite
λ-calculus and prove that the set of λ-terms normalizing by infinite reduction is
not recursively enumerable.

2 Hereditary Head Normalizing Terms

In this section, we will give Klop’s Problem as well as basic definitions.

Definition 2.1 (λ-Calculus)
We have variables x, y, z, λ-terms M, N, . . . are defined by:

M, N, . . . ::= x|λx.M |MM .

Types for Hereditary Head Normalizing Terms 197

FV(M) denotes the set of free variables in M . M [x := N] denotes a standard
substitution. M = N denotes the syntactical equality modulo renaming bound
variables. Vars is the set of variables and Λ is the set of λ-terms.

One-step β-reduction M →β N is defined by the compatible closure of
(β) (λx.M)N →β M [x := N].

β-reduction M →∗
β N is defined as the reflexive transitive closure of the relation

→β . β-equality M =β N is defined as the least equivalence relation including
→∗

β . We say M reduces to N if M →∗
β N . A λ-term of the shape (λx.M)N is

called a redex. A λ-term M is called normal if there is not any λ-term N such
that M →β N .

One-step head reduction M →h N is defined by:
(head) λx1 . . . xn.(λy.M)NN1 . . . Nm →h λx1 . . . xn.M [y := N]N1 . . . Nm.

Head reduction M →∗
h N is defined as the reflexive transitive closure of the

relation→h. We will write M0 →n
h Mn for some n-step head reduction sequence

M0 →h M1 →h . . .→h Mn. The relation M →i N is defined to hold if M →β N
holds and M →h N does not hold. Inner reduction→∗

i is defined as the reflexive
transitive closure of the relation →i. A λ-term M is called head normal if there
is not any λ-term N such that M →h N . A λ-term M is called head normalizing
if there is some head normal term N such that M →∗

β N .

Example. λw.(λx.y)x((λz.z)z) →h λw.y((λz.z)z) holds, but λw.(λx.y)
x((λz.z)z)→h λw.(λx.y)xz does not hold. λw.y((λz.z)z) is a head normal form.
λw.(λx.y)xz is not a head normal form, but it is head normalizing since it re-
duces to the head normal form λw.yz. (λx.xx)(λx.xx) is not head normalizing.

Remark

(1) M →h N implies M →β N .
(2) If M is head normalizing, then there is a head normal form N such that

M →∗
h N .

(3) M is a head normal form if and only if M is of the shape
λx1 . . . xn.yN1 . . .Nm.

(4) M is a normal form if and only if M is of the shape λx1 . . . xn.yN1 . . . Nm

where Ni is a normal form for all i.

Definition 2.2 (Böhm Trees)
We suppose ⊥ is a constant. A Böhm tree is defined as a (possibly infinite)
tree with node labels in {λx1 . . . xn.y|x1, . . . , xn, y ∈ Vars} ∪ {⊥}. Böhm tree
BT(M) of a λ-term M is defined by:

(1) BT(M) = ⊥ if M is not head normalizing,

(2) BT(M) is

�
�

�
�

�

�
�

�
�

�

λx1 . . . xn.y

BT(M1) BT(Mm)

· · ·
,

if M =β λx1 . . . xn.yM1 . . .Mm.

198 M. Tatsuta

We will sometimes write [λx1 . . . xn.y, BT(M1), . . . , BT(Mm)] for BT(M)
given in (2), for saving space.

Remark
(1) If M =β N , then BT(M) = BT(N).
(2) BT(M) = ⊥ if and only if M is not head normalizing.

Example. BT(λw.(λx.y)x((λz.z)z)w) = BT(λw.yzw) = [λw.y, z, w]. BT(λw.
(λx.xx)(λx.xx)((λz.z)z)w) = ⊥. BT(λw.(λx.y)x((λx.xx)(λx.xx))w) = [λw.y,
⊥, w]. BT(λw.(λx.y)x((λz.y)((λx.xx)(λx.xx)))) = [λw.y, y].

Definition 2.3 (Hereditary Head Normalizing). A λ-term M is called
hereditary head normalizing if BT(M) does not contain ⊥. HHN is defined to
be the set of hereditary head normalizing λ-terms.

Klop’s Problem [4] is finding a type that characterizes the set of hereditary head
normalizing terms. This question expects that there is some type system T with
some type A such that M : A is provable in T if and only if M is hereditary
head normalizing.

We will answer this question. First, in Section 3 we will show that the set
of hereditary head normalizing terms is not recursively enumerable. Hence we
will conclude that there does not exist any type that characterizes hereditary
head normalizing terms if the system has a recursively enumerable language and
a recursively enumerable set of inference rules. Secondly, in Section 5 we will
present an intersection type systems with a countably infinite set of types which
characterizes hereditary head normalizing terms.

3 Non-existence of a Type for HHN

We will show that there does not exist any type that characterizes the set HHN
of hereditary head normalizing terms. First we will show the set PPR of indices
of positive primitive recursive functions is not recursively enumerable, by using a
diagonal argument. We will define the λ-term T so that Te0 checks if {e}pr(n) >
0 for each n one by one, and show that e ∈ PPR iff Te0 ∈ HHN. Combining
those, we will prove HHN is not recursively enumerable.

Notation. N is the set of natural numbers. We will use a vector notation �e
to denote a sequence e1, . . . , en (n ≥ 0). For example, we will use �M to de-
note a sequence of λ-terms M1, . . . , Mn (n ≥ 0). M �N denotes MN1 . . . Nn.
λ�x.M denotes λx1 . . . xn.M . f(�x) denotes f(x1, . . . , xn) if �x denotes the sequence
x1, . . . , xn. We will write n for the n-th Church numeral λfx.fnx where fnx de-
notes f(f(. . . (fx) . . .)) (n times of f).

First, we give several notations for primitive recursive functions.

Definition 3.1. 〈x, y〉 denotes the standard primitive recursive surjective pair-
ing, and π0(x) and π1(x) are the first and second projections respectively.

We fix some listing of all the unary primitive recursive functions so that
the n-th unary primitive recursive function is effectively obtained from n.

Types for Hereditary Head Normalizing Terms 199

For a number n, {n}pr(x) is defined as the n-th unary primitive recur-
sive function. The n-th unary partial recursive function {n}(x) is defined by
{π1(n)}pr(μy.({π0(n)}pr(〈x, y〉) = 0)). We also define u(x, y) = {x}pr(y).

Remark. π0(〈n, m〉) = n and π1(〈n, m〉) = m hold. For a total function g(x),
μy.(g(y) = 0) returns n if g(y) = 0 for some y such that g(n) = 0 and g(x) > 0
for all x < n, and is undefined if g(x) > 0 for all x. The function u is a universal
function for unary primitive recursive functions. u is a total recursive function.

Definition 3.2. For a function f : Nn → N , we say that a λ-term F represents
f when f(m1, . . . , mn) = m iff Fm1 . . . mn =β m for all m, m1, . . . , mn ∈ N .

Theorem 4.15 in Page 53 in [5] showed the following claim.

Theorem 3.3 ([5]). For every recursive function f , there is some λ-term F
such that F represents f .

Definition 3.4. PPR is defined to be the set {n ∈ N |∀x({n}pr(x) > 0)}.
PPR is the set of indices for positive primitive recursive functions.

Proposition 3.5. The set PPR is not recursively enumerable.

Proof. By standard results from recursion theory, we have the primitive recursive
function P : N → N defined by {P (n)}pr(m) = 〈n, m〉, and the primitive
recursive function Q : N2 → N defined by {Q(n, m)}pr(x) = {n}pr({m}pr(x)).

Assume that PPR is recursively enumerable. We will show contradiction.
Define a partial function f : N → N by f(x) = 1 if Q(π0(x), P (x)) is in

PPR, and f(x) is undefined otherwise. Then f is partial recursive. There is a
number e such that for all x, both {e}(x) and f(x) has the same value or both
are undefined.

Then we show that f(x) is defined if and only if {x}(x) is undefined.
It is proved as follows: f(x) is defined iff Q(π0(x), P (x)) is in PPR by
the definition of f , iff ∀y({π0(x)}pr({P (x)}pr(y)) > 0) by the definition
of Q and PPR, iff ∀y({π0(x)}pr(〈x, y〉) > 0) by the definition of P , iff
{π1(x)}pr(μy.({π0(x)}pr(〈x, y〉) = 0)) is undefined, iff {x}(x) is undefined by
the definition of the x-th unary partial recursive function.

If {e}(e) is defined, then f(e) is defined by the definition of e, and hence
{e}(e) is undefined by the above. Hence {e}(e) is undefined. However, f(e) is
undefined by the definition of e, and hence {e}(e) is defined by the above, which
leads to contradiction.

Consequently, the set PPR is not recursively enumerable. �

We define

S = λyfx.f(yfx),
Y0 = λxy.y(xxy),
Y = Y0Y0,
Δ = λx.xx.

200 M. Tatsuta

The term S is the successor for Church numerals. Y is Turing’s fixed point
operator and we have Y M →∗

β M(Y M).
We now prove the first main theorem by using PPR.

Theorem 3.6. The set HHN of hereditary head normalizing terms is not recur-
sively enumerable.

Proof. Assume HHN is recursively enumerable. We will show contradiction.
By Theorem 3.3, we have a λ-term U that represents the function u.
Fix variables a and w. Define T by

T = Y (λtxy.Uxy(λw.a)(ΔΔ)(tx(Sy))).

We show that Te0 is in HHN if and only if e is in PPR. The direction from
the right to the left is proved by BT(Te0) = [a, [a, [a, [. . .]]]] when e is in PPR,
and hence Te0 is in HHN. In order to show the direction from the left to the
right, first we assume e is not in PPR and will show Te0 is not in HHN. From
e �∈ PPR, we have a number m0 such that {e}pr(m0) = 0 and {e}pr(m) > 0

for all m < m0. Then BT(Te0) = [

m0︷ ︸︸ ︷
a, [a, [. . . [a,⊥] . . .]]], and hence Te0 is not in

HHN.
If HHN were recursively enumerable, then PPR would be recursively enu-

merable, which would lead to contradiction. Therefore HHN is not recursively
enumerable. �

Non-existence of solutions for Klop’s Problem follows immediately from the pre-
vious theorem.

Theorem 3.7. There does not exist any type system T with any type A
such that its language and the set of its inference rules are recursively enu-
merable, and the set of hereditary head normalizing terms is the same as
{M |Γ�M : A is provable in T for some Γ}.
Proof. If we had such a type system T , then {M |Γ�M : A is provable in T
for some Γ} would be recursively enumerable, and therefore HHN would be
recursively enumerable, which would contradict to Theorem 3.6. �

4 Set-Theoretic Properties of HHN

We will discuss some set-theoretic properties of hereditary head normalizing
terms. We will define the sets HNn and Qn as the set of λ-terms whose Böhm
trees do not contain ⊥ at depth < n, and the set of terms in HNn such that
the roots of their Böhm trees do not contain abstractions, respectively. We will
show some set-theoretic inequality for those, which will be used in Section 6.

We will write An→B for A→ . . .→A→B (n times of A).

Proposition 4.1. HHN is the greatest fixed point X ⊆ Λ of the equation:

(1) if M ∈ X, then there exist N1, . . . , Nm ∈ X (m ≥ 0) such that M =β

λx1 . . . xn.yN1 . . .Nm.

Types for Hereditary Head Normalizing Terms 201

Proof. First, we will show HHN is a solution of (1). Suppose M in HHN. Then
M has a head normal form λ�x.y �N such that M reduces to λ�x.y �N . Then BT(Ni)
does not contain ⊥. Therefore Ni is in HHN.

Secondly, we will show HHN is the greatest solution of (1). Assume X is a
solution. We will show X ⊆ HHN. Assume M ∈ X . We will show that any node
at depth ≤ k in BT(M) is not ⊥ by induction on k.

Case k = 0. Since M has a head normal form, the node is not ⊥.
Case k + 1. We have M =β λ�x.y �N , Ni ∈ X . By induction hypothesis, a node

at depth ≤ k in BT(Ni) is not ⊥. Hence a node at depth ≤ k +1 in BT(λ�x.y �N)
is not ⊥. Then a node at depth ≤ k + 1 in BT(M) is not ⊥.

Therefore a node at depth ≤ k in BT(M) is not ⊥ for any k. Hence we have
M ∈ HHN. �

Definition 4.2. HN0 is the set Λ.
HNk+1 is the set {M |M →∗

β λ�x.y �N, Ni ∈ HNk}.
Remark

(1) M ∈ HNk iff any node at depth < k in BT(M) is not ⊥.
(2) HNk+1 ⊆ HNk.
(3) HHN = ∩∞k=0HNk.

Definition 4.3. Qn is defined as {M |M →∗
β x �N, x ∈ Vars, Ni ∈ HNn−1} for

n ≥ 1.
X→Y is defined as {M |∀N ∈ X(MN ∈ Y)}, for X, Y ⊆ Λ.

Remark. Qn ⊆ HNn.

Lemma 4.4

(1) HNn is closed under →β.
(2) Qn is closed under →β.
(3) M ∈ Qn and M →∗

β x �N imply Ni ∈ HNn−1.

Proof.

(1) By induction on n. Case n+1. Suppose M ∈ HNn+1 and M →β N . We have
M →∗

β λ�x.y�L, Li ∈ HNn. By Church-Rosser, we have N →∗
β λ�x.y �L′, Li →∗

β L′
i.

By induction hypothesis, L′
i ∈ HNn holds. Then we have N ∈ HNn+1.

(2) Suppose M ∈ Qn and M →β N . We have M →∗
β x�L, Li ∈ HNn−1. By

Church-Rosser, we have N →∗
β x�L′ and Li →∗

β L′
i. By (1), we have L′

i ∈ HNn−1.
Therefore we have N ∈ Qn.
(3) By (2), we have x �N ∈ Qn. Then we have x �N →∗

β x�L and Li ∈ HNn−1.
Hence Ni →∗

β Li and Ni ∈ HNn−1. �

Proposition 4.5

(1) Qn+1 ⊆ Qn (n ≥ 1).
(2) Qn+1 ⊆ HNn→Qn+1 (n ≥ 0).
(3) HNn ⊇ Qm

n→Qn (n ≥ 1, m ≥ 0).

202 M. Tatsuta

Proof.

(1) From HNn ⊆ HNn−1.
(2) Suppose M ∈ Qn+1 and N ∈ HNn. We have M →∗

β x�L, Li ∈ HNn. Hence
MN →∗

β x�LN . Then we have MN ∈ Qn+1.
(3) Assume M ∈ Qm

n→Qn. By Definition 4.3, we have xi ∈ Qn. Then M�x(m) ∈
Qn holds where �x(m) is x1, . . . , xm. Hence M is head normalizing and we have
M →∗

β λ�x(l).y �N . If m < l, then we have M�x(m) →∗
β λxm+1 . . . xl.y �N and

M�x(m) →∗
β z�L does not hold by Church-Rosser, which contradicts to M�x(m) ∈

Qn. Hence we get m ≥ l. Then we have M�x(m) →∗
β y �Nxl+1 . . . xm. By M�x(m) ∈

Qn, from Lemma 4.4 (3), we have Ni ∈ HNn−1. Hence M ∈ HNn. �

5 Types for HHN

This section will present a type system with a countably infinite set of types
which characterizes hereditary head normalizing terms.

Definition 5.1. We define the type system T .
We have type constants pn, qm, q, and Ω (n ≥ 0, m ≥ 1). Types A, B, . . . are

defined by:
A, B, . . . ::= pn|qm|q|Ω|A→A|A ∩A (n ≥ 0, m ≥ 1).
Type preorder A ≤ B is defined by:

A ≤ A

A ≤ B B ≤ C

A ≤ C A ∩B ≤ A A ∩B ≤ B
p0 = Ω
qn+1 ≤ pn→qn+1 (n ≥ 0)
pn ≥ qm

n →qn (n ≥ 1, m ≥ 0)
qn+1 ≤ qn (n ≥ 1)
qn ≥ q (n ≥ 1)

A type declaration is a finite set of x : A where x is a variable and A is a
type. We will write Γ, Δ, . . . for a type declaration. A judgment is Γ�M : A. We
will also write x1 : B1, . . . , xn : Bn�M : A for {x1 : B1, . . . , xn : Bn}�M : A,
and Γ, y : C�M : A for x1 : B1, . . . , xn : Bn, y : C�M : A, when Γ is {x1 :
B1, . . . , xn : Bn}.

Typing rules are given by:

Γ, x : A�x : A
(Ass)

Γ, x : A�M : B

Γ�λx.M : A→B
(→I) Γ�M : A→B Γ�N : A

Γ�MN : B
(→E)

Γ�M : A Γ�M : B
Γ�M : A ∩B

(∩I)
Γ�M : A A ≤ B

Γ�M : B
(≤)

Γ�M : Ω
(Ω)

Types for Hereditary Head Normalizing Terms 203

Notation. We will write {x1, . . . , xn} : A for {x1 : A, . . . , xn : A}.
This is a standard intersection type system except for constants pn, qn, q. Our

intended meaning of the constants pn, qn, and q are the set HNn, the set Qn, and
∩nQn respectively. Our discussion will also go well in the same way when we add
other set-theoretically-sound rules for the type preorder such as A∩B ≤ B ∩A.
Intersection types are necessary since we need the subject expansion property
in our proof.

We have a characterization theorem of HHN by this type system with the set
of the types pn.

Theorem 5.2. M is hereditary head normalizing if and only if FV(M) : q�M :
pn is provable in the type theory T for all n.

We will finish the proof of this theorem in Section 7. The soundness of this
characterization will be proved in Section 6 and its completeness will be shown
in Section 7.

[7] gave a similar type system to our system T so that his type system is an
intersection type system with type constants an, bn, cn and type preorder, each
type an characterizes HNn, and the set of the types an characterizes HHN. We
found our system independently from his work. Our system is simpler because
we used only two sets of type constants pn, qn with five axioms for ≤, while his
system used three sets of type constants an, bn, cn with six axioms for ≤ and ∼.

6 Soundness

We will prove the soundness part of Theorem 5.2 by using set-theoretic seman-
tics. We will interpret a type by a =β-closed set of λ-terms. In particular, pn

is interpreted by HNn. The soundness of this interpretation will be proved by
induction on derivations.

Definition 6.1. The interpretation [|A|] of a type A is defined by:

[|pn|] = HNn,
[|qn|] = Qn,
[|q|] = ∩∞n=1Qn,
[|Ω|] = Λ,
[|A→B|] = [|A|]→[|B|],
[|A ∩B|] = [|A|] ∩ [|B|],

where X→Y = {M ∈ Λ|∀N ∈ X(MN ∈ Y)} for X, Y ⊆ Λ.

Proposition 6.2. [|A|] is closed under =β.

Proof. By induction on A. If A is either pn, qn, or q, the claim holds because
their interpretations are closed under β-reduction by Lemma 4.4 (1) and (2),
and their interpretations are also closed under β-expansion by their definitions.
If A is Ω, the claim holds trivially. If A is B ∩ C or B→C, the claim is proved
by induction hypothesis. �

204 M. Tatsuta

Proposition 6.3. If A ≤ B is provable, then [|A|] ⊆ [|B|] holds.

Proof. By induction on the derivation of A ≤ B. Cases are considered according
to the last rule.

The case qn+1 ≤ pn→qn+1 is proved by Proposition 4.5 (2). The case pn ≥
qm
n →qn is proved by Proposition 4.5 (3). The case qn+1 ≤ qn is proved by

Proposition 4.5 (1). �

Definition 6.4. A variable assignment ρ is defined by ρ : Vars→Λ. A variable
assignment ρ[x := M] is defined by (ρ[x := M])(x) = M and (ρ[x := M])(y) =
ρ(y) if x is not y. The interpretation [|M |]ρ of a term M with ρ is defined as
M [x1 := ρ(x1), . . . , xn := ρ(xn)] where FV(M) = {x1, . . . , xn}.

Proposition 6.5 (Soundness of Interpretation). If we have −−−→x : B�M : A
and ρ(xi) ∈ [|Bi|] (∀i), then we have [|M |]ρ ∈ [|A|].
Proof. It is proved by induction on the proof. We consider cases according to the
last rule. We will show only interesting cases.

Case (→I). Assume N ∈ [|A|]. We will show [|λx.M |]ρN ∈ [|B|]. Let ρ′ be ρ[x :=
N]. By induction hypothesis, we have [|M |]ρ′ ∈ [|B|]. Since we have [|λx.M |]ρN →β

[|M |]ρ′, from Proposition 6.2, we get [|λx.M |]ρN ∈ [|B|]. Hence [|λx.M |]ρ is in
[|A→B|].

Case (≤) is proved by Proposition 6.3. �

Proposition 6.6 (Soundness). M is hereditary head normalizing if FV(M) :
q�M : pn is provable in the type theory T for all n.

Proof. Suppose FV(M) : q�M : pn. Define ρ by ρ(x) = x. We have x ∈ [|q|]. By
Proposition 6.5, we get [|M |]ρ ∈ [|pn|]. Hence M is in HNn for all n. Consequently
M is in HHN. �

7 Completeness

We will show the completeness and finish the proof of the characterization theo-
rem. First we will show the subject expansion property. By using this property,
we will show the completeness of the set HNn for the type pn.

Lemma 7.1. If Γ�M [x := N] : A, then there exists some B such that Γ�N : B
and Γ, x : B�M : A.

Proof. By induction on the proof. Cases are considered according to the last
rule. We will show only interesting cases.

Case x �∈ FV(M). Let B be Ω.
Case (→E) and M = M1M2. Then we have

Γ�M1[x := N] : C→A Γ�M2[x := N] : C

Γ�(M1M2)[x := N] : A

Types for Hereditary Head Normalizing Terms 205

By induction hypothesis, there is B1 such that Γ�N : B1 and Γ, x : B1�M1 :
C→A. By induction hypothesis, we also have B2 such that Γ�N : B2 and
Γ, x : B2�M2 : C. Let B be B1 ∩B2. Then we have the claim.

Case (∩I). This case is proved similarly to Case (→E) by using an intersection
type. �

In order to have this lemma, we need intersection types. The subject expansion
property is proved by using this lemma.

Proposition 7.2 (Subject Expansion). If M →β N and Γ�N : A, then we
have Γ�M : A.

Proof. By induction on the proof. We consider cases according to the last rule.
We will discuss only interesting cases.

Case M = (λx.M1)M2 and N = M1[x := M2]. By Lemma 7.1, we have B
such that Γ�M2 : B and Γ, x : B�M1 : A. Then we get Γ�(λx.M1)M2 : A. �

Remark. Subject reduction also holds. However, we do not need subject reduction
property for our proof.

Lemma 7.3. If M ∈ HNn, then we have FV(M) : qn�M : pn.

Proof. By induction on n.
Case n = 0. The claim holds since p0 = Ω.
Case n + 1. Assume M ∈ HNn+1. We have M →∗

β λ�x.y �N , length(�x) = m,
length(�N) = l, and Ni ∈ HNn. By induction hypothesis for n, we have FV(Ni) :
qn�Ni : pn. By qn+1 ≤ qn, we have FV(M), �x : qn+1�Ni : pn. Then we have
y : qn+1 under the same type declaration. By using qn+1 ≤ pn→qn+1 l times,
we have FV(M), �x : qn+1�y �N : qn+1. Then we get FV(M) : qn+1�λ�x.y �N :
qm
n+1→qn+1. By qm

n+1→qn+1 ≤ pn+1, we have λ�x.y �N : pn+1 under the same type
declaration. By Proposition 7.2, we have FV(M) : qn+1�M : pn+1. �

By qn+1 ≥ q and this lemma, we get the next proposition.

Proposition 7.4 (Completeness). If M ∈ HNn, then we have FV(M) :
q�M : pn.

Remark. We have a similar property:

– If M ∈ Qn+1, then we have FV(M) : q�M : qn+1.

However, we do not need this for our proof.
Now we complete the proof of the characterization theorem.

Proof of Theorem 5.2. The implication from the right-hand side to the left-hand
side is proved by Proposition 6.6. The implication from the left-hand side to the
right-hand side is proved by Proposition 7.4. �

8 Normalizing Terms in Infinite λ-Calculus

We will discuss infinite λ-calculus [6,2], and show that the set of normalizing
λ-terms by infinite reduction is not recursively enumerable. We will define the

206 M. Tatsuta

λ-term T such that Te0 checks if {e}pr(n) > 0 for each n one by one, and show
that e ∈ PPR iff Te0 is normalizing by infinite reduction. Combining it with
non-recursive enumerability of PPR shown in Section 3, we will prove the set of
normalizing λ-terms by infinite reduction is not recursively enumerable.

Normalizing terms by infinite reduction are important in infinite λ-calculus
since they play a role of values in the same way as normal forms do in usual
λ-calculus. When we construct a formal system that describes infinite λ-calculus,
we might want to have a system that also characterizes normalizing terms by
infinite reduction. The theorem in this section shows that we cannot have such
a system.

Definition 8.1. A position, denoted by u, is defined to be a finite string of
positive integers.

For a λ-term M and a position u, the subterm M |u of M is defined by induc-
tion on u by

M |〈〉 = M,
(λx.M)|1 · u = M |u,
(MN)|1 · u = M |u,
(MN)|2 · u = N |u.

The distance d(M, N) for M, N ∈ Λ is defined as 0 if M = N , and 1
2l if

M �= N and l is the minimum length of u such that M |u and N |u are both
defined, and they are distinct variables, or of different syntactic types.

The set Λ∞ is defined as {(M0, M1, M2, . . .)|Mi ∈ Λ, ∀ε > 0∃n∀i, j ≥
n(d(Mi, Mj) < ε)} where (M0, M1, M2, . . .) is a countably infinite sequence of
λ-terms.

The equality (M0, M1, M2, . . .) ≡∞ (N0, N1, N2, . . .) on Λ∞ is defined by
limn→∞ d(Mn, Nn) = 0.

Remark
(1) d is proved to be actually a distance [6].
(2) The quotient set Λ∞/ ≡∞ is the completion of Λ with the distance d.
(3) The tree T (M) of a λ-term M is defined by

T (x) = x,

T (λx.M) =
λx

T (M)
,

T (MN) = �
�

�
�

@

T (M) T (N)

.

We will identify a λ-term M and its tree T (M). Then the depth of the sub-
term M |u in M is the length of u. We will extend trees of λ-terms to infinite
trees. An infinite λ-term corresponding to an infinite tree T can be described by

Types for Hereditary Head Normalizing Terms 207

(M0, M1, . . .) in Λ∞ such that for any depth k, if d(Mi, Mj) < 1
2k for all i, j ≥ n,

then T (Mn) and T are the same at depth ≤ k.

Definition 8.2. For M ∈ Λ and N ∈ Λ∞, M →∞ N is defined to hold if
N = (M0, M1, . . .), M = M0 →β M1 →β . . ., and limi→∞ di = ∞ where di is
the depth of the redex for Mi →β Mi+1.

Proposition 8.3. If we have M0 →β M1 →β . . . and limi→∞ di =∞ where di

is the depth of the redex for Mi →β Mi+1, then (M0, M1, . . .) is in Λ∞.

Proof. For a given ε, take k such that 1
2k < ε. From lim di =∞, there is n0 such

that di > k for all i ≥ n0. Then for all i, j ≥ n0, we have d(Mi, Mj) < 1
2k < ε.�

Our Λ∞ and →∞ are equivalent to Λ111 and the strongly convergent reduction
sequence of length ω in [6]. If we add usual finite β-reduction to our infinite
reduction, they will become equivalent to the infinite terms and the infinite
β-reduction →∞ in [2].

Definition 8.4. We say that M ∈ Λ∞ has a redex when M is (M0, M1, . . .)
and we have u and n such that Mi|u = (λx.Pi)Qi for all i ≥ n. M ∈ Λ∞ is a
normal form if M does not have any redex. We say that M ∈ Λ is normalizing
by infinite reduction when there is a normal form N ∈ Λ∞ such that M →∞ N .
NF∞ is defined to be the set of normalizing λ-terms by infinite reduction.

Theorem 8.5. The set NF∞ of λ-terms normalizing by infinite reduction is not
recursively enumerable.

We will prove this theorem in this section after some preparation.
The next lemma is a standard result in λ-calculus.

Lemma 8.6. If M →∗
β N includes n steps of head reduction, then there is L

such that M →∗
h L→∗

i N and M →∗
h L has ≥ n steps.

Definition 8.7. We will use S, Y0, Y, n, u, U and Δ defined in Section 3. Fix
variables a and w. T is defined by

T = Y (λtxy.Uxy(λw.tx(Sy)a)(ΔΔ)).

We will write M�a(n) for Ma . . . a (n times of a).

Ten computes {e}pr(n), {e}pr(n + 1), . . . and produces extra arguments a’s if
they are positive, and stops with ΔΔ when it encounters some m such that
{e}pr(m) = 0.

Proposition 8.8. If e is not in PPR, then Te0 is not normalizing by infinite
reduction.

Proof. Assume Te0 is normalizing by infinite reduction. We will show contradic-
tion.

Suppose Te0 = M0 →β M1 →β M2 →β . . ., and M∞ is (M0, M1, . . .) and
normal. Let di be the depth of the redex for Mi →β Mi+1.

208 M. Tatsuta

Since e is not in PPR, there is m0 such that {e}pr(m0) = 0 and {e}pr(m) > 0
for all m < m0.

Choose a fresh variable z and let T ′ be Y (λtxy.Uxy(λw.tx(Sy)a)z). T ′en→∗
β

T ′en + 1a holds when {e}pr(n) > 0, and T ′en →∗
β z holds when {e}pr(n) = 0.

Hence T ′e0 →∗
β z�a(m0). By Lemma 8.6, we have L such that T ′e0 →∗

h L →∗
i

z�a(m0). Then L = z �P for some �P . By substituting ΔΔ for z, we have Te0 →∗
h

ΔΔ�P ′ where �P ′ = �P [z := ΔΔ].
Case 1 when M0 →β M1 →β . . . includes only finitely many head reduction

steps. We have some n such that Mn is a head normal form since M∞ is normal.
Then we have ΔΔ�P ′ =β Mn, which leads to contradiction.

Case 2 when M0 →β M1 →β . . . includes infinitely many head reduction steps.
Suppose Te0→n0

h ΔΔ�P ′ for some n0. We have some n1 such that M0 →∗
β Mn1

includes at least n0 head reduction steps. By Lemma 8.6, we have Q such that
M0 →n0≤

h Q →∗
i Mn1 . Hence Q = ΔΔ�P ′. Therefore Mn1 = ΔΔ�R for some �R,

which contradicts to the normality of M∞. �

Proposition 8.9. e is in PPR if and only if Te0 ∈ NF∞.

Proof. From the left-hand side to the right-hand side. We have Te0→∗
β Te1a→∗

β

Te2aa →∗
β Te3aaa →∗

β Let this reduction sequence be M0 →β M1 →β . . .

and M∞ be the sequence (M0, M1, . . .). Then Te0→∞ M∞ holds and M∞ is a
normal form. Hence Te0 is in NF∞.

From the right-hand side to the left-hand side. The claim immediately follows
from Proposition 8.8. �

Proof of Theorem 8.5. If NF∞ were recursively enumerable, the set {e|Te0 ∈
NF∞} would be also recursively enumerable, but this set is the same as PPR
from Proposition 8.9, so PPR would be also recursively enumerable, which would
contradict to Proposition 3.5. Therefore NF∞ is not recursively enumerable. �

The same technique will prove that NF∞∪NF<∞ is not recursively enumerable,
where NF<∞ is the set of weakly normalizing terms by β-reduction.

9 Concluding Remarks

Future work will be extending our technique developed in this paper to general
infinite λ-calculi Λabc with →∞ for a, b, c = 0, 1 in [6], in order to (1) prove
the set NFabc

∞ of λ-terms having normal forms by →∞ in Λabc is not recursively
enumerable and (2) provide an intersection type system with a countably infinite
set of types that characterizes the set NFabc

∞ .

Acknowledgments

We would like to thank Professor Jan Willem Klop, Professor Mariangiola
Dezani-Ciancaglini, and Professor Henk Barendregt for references. We would

Types for Hereditary Head Normalizing Terms 209

also like to thank Professor Elio Giovannetti for suggesting Klop’s Problem.
We would also like to thank Professor Kazushige Terui and Professor Makoto
Kanazawa for discussions at NII Logic Seminar. We would also thank the anony-
mous referees for valuable comments for improving this paper.

References

1. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A Filter Lambda Model and
the Completeness of Type Assignment. Journal of Symbolic Logic 48(4), 931–940
(1983)

2. Berarducci, A., Dezani-Ciancaglini, M.: Infinite lambda-calculus and Types. The-
oretical Computer Science 212, 29–75 (1999)

3. Dezani-Ciancaglini, M., Honsell, F., Motohama, Y.: Compositional Characteriza-
tion of λ-terms using Intersection Types. Theoretical Computer Science 340(3),
459–495 (2005)

4. Dezani-Ciancaglini, M.: Private communication (2007)
5. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ-Calculus. Cam-

bridge University Press, Cambridge (1986)
6. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinitary lambda calculus.

Theoretical Computer Science 175(1), 93–125 (1997)
7. Kurata, T.: A Type Theoretical View of Böhm-Trees. In: de Groote, P., Hindley,

J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 231–247. Springer, Heidelberg (1997)
8. Raffalli, C.: Data Types, Infinity and Equality in System AF2. In: Meinke, K.,

Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 280–294. Springer,
Heidelberg (1994)

9. Tatsuta, M., Dezani-Ciancaglini, M.: Normalisation is Insensible to lambda-term
Identity or Difference. In: Proceedings of Twenty First Annual IEEE Symposium
on Logic in Computer Science, pp. 327–336 (2006)

10. Terese (Bezem, M., Klop, J.W., de Vrijer, R. (eds.)), Term Rewriting Systems,
Cambridge University Press (2003)

A New Translation for Semi-classical Theories

— Backtracking without CPS

Satoshi Kobayashi

Dept. of Computer Science, Kyoto Sangyo University,
Kamigamo Motoyama, Kita-ku, Kyoto, Japan

kbys@cc.kyoto-su.ac.jp

Abstract. Most research of algorithm extraction from classical proofs is
based on double negation translation or its variants. From the viewpoint
of Curry-Howard isomorphism, double negation translation corresponds
to CPS translation. Unfortunately, CPS translation makes resulting pro-
grams very complex.

In this paper, we study a new translation for a semi-classical logic
which is not based on double negation translation. Though it does not
validate full classical logic, it translates Limit Computable Mathematics
(LCM) into constructive mathematics.

Our translation is inspired by game semantics with backtracking rules.
Using the translation, we can extract an algorithm from a proof of a
proposition A in LCM. The extracted algorithm gives a recursive winning
strategy for the first mover of the game defined from A, at least when A
is implication-free.

1 Introduction

In this paper, we propose a new translational semantics for an arithmetic with
a weak version of excluded middle. Most research of algorithm extraction from
classical proofs is based on Gödel-Gentzen’s double negation translation or its
variants such as the Kuroda translation.

Suppose a formula A is proved in classical arithmetic. Let us write A¬¬ for the
result of double negation translation of A. Then A¬¬ is proved in intuitionistic
logic. The proof of A is translated to a proof of A¬¬. Since the latter proof is
constructive, we can extract an algorithm from the proof. From the viewpoint of
Curry-Howard isomorphism, the translation of the proof is considered as a kind
of CPS translation. (Speaking more exactly, Friedman’s A-translation is usually
applied after double negation translation.)

There have been many proposals of proof-term calculi for classical logic. CPS
is often used in order to investigate various properties of such calculi, for example,
strong normalizability.

However, generally speaking, algorithms extracted from classical proofs are
complex. It is difficult to understand their meaning by tracing their execution.

Therefore, we take the following approach: We give up full classical logic. In-
stead, we use only weaker principles as Σ0

1 -excluded middle. Here, Σ0
1 -excluded

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 210–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Translation for Semi-classical Theories — Backtracking without CPS 211

middle is the excluded middle A ∨ ¬A restricted to the case where A is a Σ0
1

formula. Limit Computable Mathematics (LCM) is mathematics based on such
restricted classical logic. It is known that we can develop large part of classical
mathematics within LCM[1,14,5]. Roughly speaking, LCM is constructive math-
ematics extended with Σ0

1 -excluded middle. We give a new translation for LCM
not based on double negation translation. Our translation gives a new method
of algorithm extraction from LCM proofs. We expect that using the method we
can extract more comprehensible algorithms than when we use methods for full
classical proofs.

1.1 Limiting Realizability Interpretation

There was already a method of algorithm extraction for LCM: Nakata and
Hayashi’s “limiting realizability interpretation” [13]. It uses Δ0

2 functions in place
of recursive functions. A Δ0

2 function f is given as a limit of some recursive func-
tion g. The infinite sequence of natural numbers g(0, x), . . . , g(n, x), . . . converges
to f(x) in limit. We can consider f as a “learning algorithm” which converges
to “the correct answer” after making finite number of mistakes. We can extract
such a learning algorithm from a proof in LCM by using the realizability inter-
pretation. However, generally speaking, the above g becomes quite complex and
inefficient. It will be very difficult to understand the computational content of
the proof by executing the extracted algorithm.

1.2 Backtracking Game

Therefore, Berardi, Coquand, Hayashi and the author switched to another ap-
proach: game semantics with backtracking rules.

The essential idea of the game semantics[7,3] is as follows: Suppose a sentence
A is given. Then a two-person game is defined. The two players are called Eloise
and Abelard. Eloise is the first mover. Eloise must defend the truth of A. She
tries to show evidence for A. Abelard attacks Eloise by trying to find a counter
example. A play of the game is a dialogue between these two players. Consider
the case where Eloise must defend B ∨ C. Then she has two choices: she must
choose either B or C, and she must defend it. However, she can retract her choice
later; she can backtrack. She can go back to this choice point and try another
choice. Similarly, consider the case where Eloise must defend ∃x.P (x). Then she
has infinitely many choices: she must choose a term t and defend P (t). Also in
this case, she can go back to this choice point and try another choice, say, P (t′).
Only Eloise can backtrack. Abelard is not allowed to backtrack.

Let us consider ∃x.P (x) ∨ ∀x.P̄ (x), where P is a decidable predicate and P̄
is the complement of P . This is an instance of Σ0

1 -excluded middle. Suppose
that Eloise must defend this sentence. She can win by the following strategy:
She chooses ∀x.P̄ (x) for the first time. Then Abelard tries to present a counter
example for this formula. He chooses a closed term t and request Eloise to de-
fend P̄ (t). If P̄ (t) is true (i.e. t is not a counter example), then Eloise wins.
Otherwise (i.e. P̄ (t) is false and P (t) is true), the previous choice by Eloise

212 S. Kobayashi

was wrong. She goes back to the previous choice point (backtrack). She chooses
∃x.P (x) this time. Then she must show a concrete example for ∃x.P (x). Now
she knows that P (t) is true. She answers P (t) and she wins, because she has
reached a true atomic sentence P (t). Note that she learned a correct answer
from Abelard’s attack. We can prove that a proof of A in LCM corresponds to
a winning strategy[3]. This result means that we can extract an algorithm from
a proof in LCM; an algorithm which gives a winning strategy for Eloise.

Backtracking in this game semantics is irreversible in the following sense:
Eloise can retract ordinary moves. However, she can not retract previous re-
tractions. That is, she can not undo previous undo’s. This restricted version of
backtracking is called 1-backtracking.

Presence of 1-backtracking is essential in this game semantics. Without
1-backtracking, we can not validate Σ0

1-excluded middle.
Berardi[4] gave a game semantics for intuitionistic logic. 1-Backtracking is

not allowed in the games in [4]. Berardi and Yamagada [7] gave a 1-backtracking
game semantics for the positive (i.e. implication-free) fragment of LCM. The
author [3] gave a 1-backtracking game semantics for full LCM (i.e. with impli-
cations).

Note 1. It is known that reversible backtracking (full backtracking) is strictly
stronger than 1-backtracking. Coquand[8] gave a game semantics with full back-
tracking for full classical logic.

1.3 Problems with Game Semantics

However, the author found that the game semantics has some demerits. First,
the author feels that game semantics is too operational. Being operational may
be a merit when we visualize algorithms. However, it can be troublesome for
theoretical analysis. On the other hand, realizability interpretation is much less
operational, because it uses purely functional calculus. Secondly, the game se-
mantics given in [7,4,3] is too closely tied to a particular sequent calculus. In
contrast, realizability interpretation is independent from proof syntax of logics.
It works equally for sequent calculi, natural deduction systems, Hilbert style
systems, or any other calculus.

Moreover, it is difficult to understand the meaning of cut rule in game seman-
tics. Consider the simplest form of cut rule:

� A A � B
� B

The meaning of � A is that the first mover can show A. However, the meaning of
A � B is that if the second mover can show A, then the first mover can show B.
That is, A has different meanings in � A and A � B. Hence, validity of � B is not
intuitively clear even if � A and A � B are valid. (This is one of the reasons why
the author did not include discussions on cut rule in [3].) Meanwhile, validity of
cut rule is trivial in realizability interpretation.

A New Translation for Semi-classical Theories — Backtracking without CPS 213

1.4 Realizability Interpretation with Backtracking

For the above reason, the author began to reconsider realizability interpretation
for LCM.

We want to find a realizability interpretation so that a realizer of a proposition
A corresponds to a winning strategy for the first mover of the game defined from
A. The author considered the following two-staged solution:

1. First we define a translation which maps a formula A of LCM to another
formula A′ in some constructive logic.

2. A realizer of A is defined as a realizer of A′.

Then the most important job is to find a translation which reflects the interpre-
tation of formulas in the game semantics with backtracking.

In the next section, we will give the definition of such a translation.

2 Definition of the Translation

2.1 Fundamental Ideas

First let us have an informal discussion on the key ideas behind our trans-
lational semantics. Our translation is defined as a modification of Friedman’s
A-translation. Recall that Friedman’s original A-translation was defined as
follows:

– Choose a formula A and fix it.
– For each formula φ, we define another formula φA as follows:

• If P is atomic, then PA ≡ P ∨ A.
• If ◦ is ∧, ∨ or →, then (B ◦ C)A ≡ BA ◦ CA.
• (∀x.B)A ≡ ∀x.BA, (∃x.B)A ≡ ∃x.BA.

Let us reconsider the intuitive meaning of BA. Assume that our main goal is
to prove B, and we are trying to show an atomic subformula P as a subgoal.
Suppose P is false. Then we are stuck. However, if P is replaced by PA (≡ P ∨A),
then we have a chance of escape. Now we can “escape to A”, that is, we may
prove A instead of showing P . For example, let A be the top level formula. Then
we can go back to the starting position when we are stuck. That looks similar
to backtracking of game semantics.

However, this escape mechanism is insufficient for our purpose, because we
can go back to the previous position only once. In proving BA, we can escape
to A. However, if A is not of the form BA, we have no more chance to escape. If
we wish to escape twice, we should replace BA by BBA

; then we can escape to
BA for the first time and can escape to A for the second time. However, twice
is not yet sufficient, of course. We must be able to escape as many times as we
want. Therefore the right solution is to modify the definition of BA so that BA

becomes the least fixpoint of the mapping X
→ BX . Here it is important that
the fixpoint must be the least one, because we should admit only finitely many
times of backtracking. That is, we should use inductive definitions to define BA.

214 S. Kobayashi

2.2 Formal Definition of the Translation

According to the above idea, we give the formal definition of our translation.
Let IL2 be intuitionistic predicate logic extended with universal quantification

over propositional variables ∀X.A[X] and inductive definition of propositions
μX.A[X]. Here, all ccurrences of the propositional variable X must be positive
in A[X]. We translate first order formulas into IL2.

The proposition μX.A[X] means the least proposition satisfying A[μX.A[X]]
⇔ μX.A[X]. We assume that IL2 has the following two axiom schema for in-
ductive definitions:

1. A[μX.A[X]] → μX.A[X]
2. (A[C] → C) → μX.A[X] → C (Transfinite Induction)

Note 2. It is well-known that we can define μX.A[X] using universal quantifica-
tion over propositions. However, it has an advantage to have both ∀X.A[X]
and μX.A[X] as primitives; we can define realizability of μX.A[X] so that
e r μX.A[X] is equivalent to e r A[μX.A[x]] by using techniques developed
in the author’s old work[2]. Though [2] is on inductive definitions of predicates,
the technique can be applied to inductive definition of propositions, since propo-
sitions are 0-place predicates.

Notation. We often write A ≤ B when A → B holds. We consider A ≤ B as
an ordering on propositions. We write A ⇔ B for “A ≤ B and B ≤ A”

Definition 1. Let A be a first order formula and X be an IL2 formula. We
define another IL2 formula AX by induction on the complexity of A as follows:

– PX ≡ P ∨ X (P is atomic)
– (A ∧ B)X ≡ AX ∧ BX

– (A ∨ B)X ≡ μP.(AP∨X ∨ BP∨X).
– (A → B)X ≡ ∀Y ≥ X(AY → BY). Without abbreviation, the right hand

side is ∀Y ((X → Y) → (AY → BY)).
– (∀x.A(x))X ≡ ∀x.(A(x)X).
– (∃x.A(x))X ≡ μP.∃x.(A(x)P∨X).

The intention behind this definition is as follows:

– On disjunction: To prove A ∨ B, you must choose either A or B and prove
it. However, you can go back (backtrack) to this choice point later.

– On existential quantifier: To prove ∃x.A(x), you must choose some t and
prove A(t). However, you can go back to this choice point later.

Note that P occurs only positively in AP (P is a propositional variable). Recall
that P must be positive in A[P] when we use inductive definition μP.A[P].

We can not “simplify” (A → B)X as AX → BX . X is not positive in AX

→ BX .

A New Translation for Semi-classical Theories — Backtracking without CPS 215

The definition (A → B)X ≡ ∀Y ≥ X(AY → BY) is inspired by the interpre-
tation of implication in intuitionistic Kripke model. If we write PX as X |= P ,
the definition becomes

X |= (A → B) ⇔ ∀Y ≥ X(Y |= A → Y |= B).

Note 3. It is easy to show that AX is equivalent to A ∨ X in classical logic. In
particular, A⊥ is classically equivalent to A. Therefore our translation is just an
equivalence from classical viewpoint.

Note 4. A⊥ is not “the dual” of A. It is just AX with X = ⊥.

Our backtracking is irreversible. Note that PX is P ∨ X for an atomic P
and the disjunction in P ∨X is the ordinary intuitionistic disjunction. When we
prove P ∨ X , we must choose either P or X deterministically. Once we decided
to prove X (i.e. to backtrack), we can not retract the decision later. This is the
reason why our translation validates only irreversible backtracking.

3 Some Properties and Soundness of the Translation

3.1 Soundness for First-Order Intuitionistic Logic

The following lemma is easy.

Lemma 1

1. (AX)[x := t] ≡ (A[x := t])X[x:=t], that is, the translation preserves substitu-
tion.

2. FV (AX) = FV (A)∪FV (X), where FV (A) is the set of free variables in A.
3. (Monotonicity) (X → Y) → AX → AY .

Note that, by monotonicity, we have A⊥ ↔ ∀X.AX .

Lemma 2. X ≤ AX .

Note 5. This shows that the ⊥-elimination rule is valid.

Proof. Induction on the complexity of A:

– For an atomic formula A: X ≤ A ∨ X ≡ AX .
– If A is B ∧ C: By induction hypothesis, we have BX ≥ X and CX ≥ X .

Therefore, (B ∧ C)X ≡ BX ∧ CX ≥ X ∧ X ⇔ X .
– If A is B ∨ C: Let P ≡ (B ∨ C)X . Then, by induction hypothesis, we have

BP∨X ≥ P ∨ X and CP∨X ≥ P ∨ X . Hence P ⇔ BP∨X ∨CP∨X ≥ P ∨ X ∨
P ∨ X ≥ X .

– If A is B → C: By induction hypothesis, we have Y ≤ CY . Hence, for each
Y ≥ X , we have X ≤ Y ≤ CY ≤ (BY → CY). Therefore X ≤ (∀Y ≥
X.(BY → CY)).

– If A is ∀x.B(x): By induction hypothesis, we have X ≤ B(x)X . Therefore
X ≤ ∀x.(B(x)X).

216 S. Kobayashi

– If A is ∃x.B(x): Let P be (∃x.B(x))X . Then P ⇔ ∃x.(B(x))P∨X ≥ ∃x.(P ∨
X) ≥ X .

Lemma 3

1. Let P be (A ∨ B)X , then we have P ⇔ AP ⇔ BP .
2. Let Q be (∃x.B(x))X , then we have Q ⇔ B(t)Q for any term t.

Proof
1. By monotonicity and Lemma 2, P ≤ AP ≤ AP∨X ≤ AP∨X ∨ BP∨X ⇔ P .

Therefore P ⇔ AP . Similarly, P ⇔ BP .
2. Q ≤ B(t)Q ≤ ∃x.(B(x)Q) ≤ ∃x.(B(x)Q∨X) ⇔ Q.

Note on Lemma 3: Intuitively speaking, P ⇔ AP means that the following
strategy is safe: To show A∨B, first we try to show A, and when we are “stuck”,
we backtrack to A ∨ B. It is similar for P ⇔ BP .

Similarly, Q ⇔ B(t)Q means that the following strategy is safe: To show
∃x.B(x), first we try to show B(t) for an arbitrarily chosen t, and when we are
“stuck”, we backtrack to A ∨ B.

Lemma 4. AAX ≤ AX

Proof. Induction on the complexity of A.

– For atomic A: AAX ≡ AA∨X ≡ A ∨ A ∨ X ≡ AX .
– The case A ≡ B ∧ C: (B ∧ C)(B∧C)X

≡ B(B∧C)X ∧ C(B∧C)X ≡ BBX∧CX ∧
CBX∧CX ≤ BBX ∧ CCX ≤ BX ∧ CX ≡ (B ∧ C)X

– The case A ≡ B ∨ C: Let P ≡ (B ∨ C)X and Q ≡ (B ∨ C)P . Q is the least
proposition satisfying Q ⇔ BQ∨P ∨CQ∨P . We show Q ≤ P . By the leastness
of Q, it is sufficient to prove BP∨P ∨CP∨P ≤ P . Using Lemma 3, we obtain
LHS ⇔ BP ∨ CP ≤ P .

– The case A ≡ B → C: (B → C)X is ∀Y ≥ X.(BY → CY). Let P be this
formula, and we show (B → C)P ≤ P . The LHS is ∀Y ≥ P.(BY → CY). Let
Q be this formula and we derive P from Q. Take an arbitrary Y with X ≤ Y
and we derive CY from BY . By X ≤ Y , we have P ≤ (BY → CY). By BY ,
we have P ≤ CY . From this and Q, we have BCY → CCY

. On the other
hand, from Y ≤ CY and monotonicity, we have BY ≤ BCY

. Hence, by the
assumption BY , we have BCY

. Therefore CCY

. By induction hypothesis, we
have CCY ≤ CY and hence we can derive CY .

– The case A ≡ ∀x.B(x): We have (∀x.B(x))(∀x.B(x))X

≡ ∀x.B(x)∀x.B(x)X

≤
∀x.B(x)B(x)X

≤ ∀x.B(x)X ≤ (∀x.B(x))X .
– The case A ≡ ∃x.B(x): Let P ≡ ∃x.B(x)X and Q ≡ ∃x.B(x)P . Q is the

least proposition satisfying Q ⇔ ∃x.(B(x)(Q∨P)). We prove Q ≤ P . By the
leastness of Q, it is sufficient to show ∃x.(B(x)(P∨P)) ≤ P . By Lemma 3, we
have LHS ⇔ ∃x.(B(x)P) ≤ P .

A New Translation for Semi-classical Theories — Backtracking without CPS 217

Corollary 1. AAX ⇔ AX

Proof. From X ≤ AX and monotonicity, we have AX ≤ AAX

. By the above
lemma, AAX ⇔ AX .

Theorem 1. (Soundness of the translation) If Γ � A in (first order) intuitionis-
tic logic, we have Γ X � AX in IL2. Here, Γ X is defined as Γ X ≡ A1

X , . . . , An
X

if Γ ≡ A1, . . . , An.

Proof. Induction on the complexity of the derivation of Γ � A.

– The case of A1, . . . , An � Ai is trivial.
– ⊥-elimination: ⊥X ≡ ⊥ ∨ X ⇔ X ≤ AX .
– ∧-introduction: If Γ X � BX and Γ X � CX , then Γ X � BX ∧ CX .
– ∧-elimination: (B ∧ C)X ≡ BX ∧ CX ≤ BX . Similarly, (B ∧ C)X ≤ CX .
– ∨-introduction: Let P be (B ∨ C)X . Then P ⇔ BP∨X ∨CP∨X . Hence BX ≤

BP∨X ≤ P and CX ≤ CP∨X ≤ P .
– ∨-elimination: Suppose Γ � A∨B and Γ, A � C and Γ, B � C. By induction

hypothesis, for an arbitrary X , we have Γ X � (A ∨ B)X and Γ X , AX �
CX and Γ X , BX � CX . We show Γ X � CX . It is sufficient to prove
(A ∨ B)X ≤ CX . Let P ≡ (A ∨ B)X . Then P is the least proposition sat-
isfying P ⇔ AP∨X ∨ BP∨X . By the leastness of P , it is sufficient to show
Γ X � ACX∨X ∨ BCX∨X → CX . By induction hypothesis and monotonicity,
we have Γ X , ACX∨X � CCX∨X and Γ X , BCX∨X � CCX∨X . On the other
hand, by X ≤ CX and Lemma 4, we have CCX∨X ≤ CCX ≤ CX . Therefore
Γ X � ACX∨X ∨ BCX∨X → CX .

– →-introduction: Suppose Γ, A � B. We show Γ X � (A → B)X . By induction
hypothesis, for an arbitrary Y , we have Γ Y , AY � BY . By monotonicity,
Γ X , X → Y, AY � BY . Hence we have Γ X � ∀Y ≥ X.(AY → BY).

– →-elimination: Assume (A → B)X and AX . We derive BX . By the first
assumption, ∀Y ≥ X.(AY → BY). Taking Y as X , we have AX → BX .

– ∀-introduction: Assume Γ � A(x) and x �∈ FV (Γ). By induction hypothesis,
Γ X � A(x)X . Since x �∈ FV (Γ X), we have Γ X � ∀x.A(x)X .

– ∀-elimination: Assume Γ � ∀x.A(x). By induction hypothesis, Γ X � ∀x.

A(x)X . Hence Γ X � A(t)X .
– ∃-introduction: Assume Γ � A(t). By induction hypothesis, Γ X � A(t)X .

Hence Γ X � ∃x.(A(x)X). Let P be (∃x.A(x))X , then, by monotonicity, Γ X �
∃x.(A(x)P∨X). Therefore Γ X � (∃x.A(x))X .

– ∃-elimination: Assume Γ � ∃x.A(x) and Γ, A(x) � C. We prove Γ X � CX .
By induction hypothesis, Γ X � (∃x.A(x))X . Let P ≡ (∃x.A(x))X . Then
P is the least proposition satisfying P ⇔ ∃x.(A(x))P∨X . It is sufficient
to prove Γ X � P → CX . Assume Γ X . By the leastness of P , it is suffi-
cient to show A(x)CX∨X → CX . By induction hypothesis and monotonicity,
Γ X , A(x)CX∨X � CCX∨X . From X ≤ CX , we have CX ∨ X ⇔ CX . There-
fore CCX∨X ≤ CCX ≤ CX .

218 S. Kobayashi

3.2 Soundness for Arithmetical Axioms

Theorem 2. If A is an instance of proper axioms of Heyting Arithmetic HA,
then we can prove AX in Heyting Arithmetic over IL2.

Proof

– If A is an atomic axiom such as 0 + x = x, then A → AX is trivial.
– If A ≡ ¬(0 = 1), we have AX ⇔ ∀Y ≥ X.(0 = 1 ∨ Y → ⊥ ∨ Y) ⇔ ∀Y ≥

X.(0 = 1 → Y) ⇔ 0 = 1 → X , and hence A → AX .
– Consider the case where A is an instance of mathematical induction B(0) ∧

∀n.(B(n) → B(suc(n))) → ∀n.B(n). Then AX is ∀Y ≥ X.(B(0)Y ∧∀n.∀Z ≥
Y (B(n)Z → B(suc(n))Z) → ∀n.B(n)Y . This is easily derived from an in-
stance of mathematical induction: B(0)Y ∧ ∀n.(B(n)Y → B(suc(n))Y) →
∀n.B(n)Y .

3.3 Soundness for Σ0
1-Excluded Middle

Theorem 3. Our translation is sound for Σ0
1-excluded middle. That is, if A is

an instance of Σ0
1 -excluded middle, AX is provable in IL2.

Proof. Without loss of generality, we can assume A is of the form ∃x.B(x) ∨
∀x.B̄(x). Here, B(x) and B̄(x) are atomic formulas and B̄(x) is the complement
of B(x). We let P ≡ (∃x.B(x) ∨ ∀x.B̄(x))⊥ and show that P is provable in IL2.

P ⇔ (∃x.B(x))P∨⊥ ∨ (∀x.B̄(x))P∨⊥

≡ Q ∨ ∀x.(B̄(x) ∨ P ∨ ⊥) (1)

Here, Q is (∃x.B(x))P∨⊥ and

Q ⇔ ∃x.(B(x) ∨ Q ∨ P ∨ ⊥). (2)

Since B(x) and B̄(x) are the complement of each other, we have B(x) ∨ B̄(x).

– If B̄(x), we have B̄(x) ∨ P ∨ ⊥.
– If B(x), we can derive Q using (2). Therefore, by (1), we have P and hence

B̄(x) ∨ P ∨ ⊥.

In either case we have B̄(x) ∨ P ∨ ⊥. Therefore ∀x.(B̄(x) ∨ P ∨ ⊥). Then, using
(1), we can prove P . ��

4 Algorithm Extraction

Using the above results, we can extract an algorithm from a proof in LCM.

A New Translation for Semi-classical Theories — Backtracking without CPS 219

4.1 Realizability Interpretation

We show an outline of our realizability interpretation. For an introduction to
realizability interpretation, see Troelstra and van Dalen’s textbook[15].

First, we define recursive realizability interpretation for IL2.
Connectives and quantifiers of first order logic is interpreted as usual. For

propositional quantifiers, we define e r ∀P.A[P] according to the style of Kreisel-
Troelstra’s realizability:

e r ∀P.A[P] iff e r A[P] for all valuations to P

For inductive definitions, we define e r μP.A[P] so that the following equivalence
holds:

e r μP.A[P] iff e r A[μP.A[P]].

The definition is easy if you follow the technique given in [2]. We choose a set
variable P ∗ for each propositional variabvle P . P ∗ ranges over subsets of the set
of natural numbers. We define e r P as e ∈ P ∗ and define

e r μP.A[P] iff e ∈ μP ∗.{ u | u r A[P] },

where μP ∗.{ u | u r A[P] } is the least fixpoint of the map

P ∗
→ { u | u r A[P] }.

Then we define realizability interpretation of first order arithmetical formula
A as follows:

e rX A
def←→ e r AX .

e r A
def←→ e r A⊥.

Here X is an arbitrary proposition in IL2. ‘rX ’ has X as a parameter. Though
‘rX ’ interpretation is sound for any X , the author thinks that ‘r’ (i.e. the special
case where X is ⊥) is sufficient for most applications.

Example — Σ0
1-Excluded Middle. We gave a proof of (∃x.B(x) ∨ ∀x.B̄(x))⊥

in Section 3.3. From that proof, we can calculate a realizer e of Σ0
1 -Excluded

Middle ∃x.B(x) ∨ ∀x.B̄(x). We define e as follows:

e = inr f

where f is defined as

f(x) =
{

inl * (if B̄(x) is true)
inr(inl(inl 〈x, inl *〉)) (if B(x) is true)

Here we assume the following:

– * is a dummy realizer which realizes true atomic formulas. That is, for atomic
formula ϕ, we have e r ϕ

def←→ e = * ∧ (ϕ is true)
– inl is a realizer of formulas of the form B → B ∨ C.
– inr is a realizer of formulas of the form C → B ∨ C.

220 S. Kobayashi

Extracting a Winning Strategy. From the realizer given in the above ex-
ample, we can extract a recursive winning strategy of the game for Σ0

1 -excluded
middle.

We show an outline:

1. Since e is of the form inrf , Eloise first chooses the right disjunct ∀x.B̄(x)
and try to defend it.

2. Then Abelard attacks her. He chooses some c and requests Eloise to defend
B̄(c). Then we calculate the value of f(c). We have two cases:
(a) Case where B̄(c) is true: In this case, we have f(c) = inl * and * r B̄(c).

Hence B̄(c) is true. Eloise wins because she has reached a true atomic
formula.

(b) Case where B̄(c) is false: In this case, we have

f(c) = inr(inl(inl 〈c, inl *〉)).

Since inl 〈c, inl *〉 r P and P is the translation of the given formula, Eloise
retracts the previous choice and backtracks to the start position. Since
we have 〈c, inl *〉 r (∃x.B(x))X , Eloise chooses the left disjunct ∃x.B(x)
this time. Since * r B(c) holds, Eloise chooses c as a concrete example
for ∃x.B(x). Because B(c) is true, she wins.

Note that the given formula in this example is implication-free. In general, we
can not extract a winning strategy when the given formula includes implication.
The reason is that our game semantics[3] does not use functions to interpret
implications while we need functions to realize implications.

We have some ideas about this problem. The first one is to transform a realizer
to a computation without higher order functions. The transformation may look
similar to the procedure which translates natural deduction proofs to sequent
calculus proofs. The second idea is to develop a new game which employs func-
tions to interpret implications. However, these ideas are not yet fully investigated
by the author.

4.2 Type Theoretical Interpretation

Instead of using realizability interpretation, we may use type theory for algorithm
extraction. An outline is given below:

Suppose a type theory T has polymorphic types ∀X.A[X] and inductive types
μX.A[X]. We also assume T has products A × B, sums A + B, function types
A ⇒ B, dependent products Πx : σ.A, and dependent sums Σx : σ.A. For each
atomic formula P , we assume that a primitive type τP which corresponds P is
given.

Then T can interpret IL2 and therefore we can translate a proof in LCM to
a proof term in T.

Let A be a first order formula and X be a type in T. Then we define a type
A|X in T as follows:

A New Translation for Semi-classical Theories — Backtracking without CPS 221

– If A is atomic, then P | X = τA + X .
– (A ∧ B) | X = (A | X) × (B | X).
– (A ∨ B) | X = μP.((A | (P + X)) + (B | (P + X))).
– (A → B) | X = ∀Y.((X ⇒ Y) ⇒ (A | Y) ⇒ (B | Y))
– (∀x.A(x)) | X =

∏
x : σ.(A(x) | X). Here, σ is the type of the variable x.

For example, if x is a natural number variable, then σ is the type of natural
numbers.

– (∃x.A(x))|X = μP.
∑

x : σ.(A(x)|P + X). Here, σ is the type of the variable
of x.

Then we can effectively find a term of type A | X when a proof of A in LCM
arithmetic is given.

5 Hierarchy of Weak Axioms of Excluded Middle

We write EMn for Σ0
n-excluded middle. Since our translation validates EM1, it

is natural to conjecture that the translation reduces the strength of EMn+1 to
that of EMn.

In this section, we prove that if A is an instance of EMn+1, then AX is derived
from EMn in IL2.

Lemma 5. Suppose that a formula A is a prenex form Q1x. · · · .Qnx.P with
an atomic formula P , and the sequence of quantifiers Q1, . . . , Qn is alternating.
Then,

1. If A is a Π0
n-formula, then AX ⇔ A ∨ X is derived from EMn in IL2.

2. If A is a Σ0
n-formula, then AX ⇔ A ∨ X is derived from EMn−1 in IL2.

Here, n ≥ 1 and EM0 means � (true).

Proof. We prove the above 1 and 2 simultaneously by induction on n.

– If n = 1:
• Let A be a Π0

1 -formula ∀x.B(x). Then AX = ∀x.(B(x)∨X). Since B(x)
is atomic, we have ∀x.B(x)∨∃x.¬B(x) by EM1. Hence ∀x.(B(x)∨X) ⇔
(∀x.B(x)) ∨ X . Therefore AX ⇔ A ∨ X .

• Let A be a Σ0
1 -formula ∃x.B(x) (B(x) is atomic). Let P ≡ (∃x.B(x))X .

Then,

P ⇔ ∃x.(B(x)P∨X)
⇔ ∃x.(B(x) ∨ P ∨ X)
⇔ P ∨ (∃x.B(x)) ∨ X

P is the least proposition satisfying P ⇔ P ∨ (∃x.B(x)) ∨ X . However,
it is clear that (∃x.B(x)) ∨ X is the least proposition satisfying this
equivalence. Therefore, P ⇔ (∃x.B(x)) ∨ X .

222 S. Kobayashi

– Induction step: We assume the case of n = k and prove the case of n = k+1.
• Let A be a Π0

k+1-formula ∀x.B(x). Then B(x) is a Σ0
k-formula. By in-

duction hypothesis, we can derive B(x)X ⇔ B(x) ∨ X from EMk−1.
Hence, (∀x.B(x))X ⇔ ∀x.(B(x)X)

⇔ ∀x.(B(x) ∨ X)

Since we have ∀x.B(x) ∨ ∃x.¬B(x) by EMk+1, the right hand side is
equivalent to (∀x.B(x)) ∨ X .

• Le A be a Σ0
k+1-formula ∃x.B(x). Then B(x) is a Π0

k -formula. By in-
duction hypothesis, we can derive B(x)X ⇔ B(x) ∨ X from EMk. Let
P ≡ (∃x.B(x))X . Then P is the least proposition satisfying:

P ⇔ ∃x.(B(x)P∨X)
⇔ ∃x.(B(x) ∨ P ∨ X)
⇔ P ∨ (∃x.B(x)) ∨ X.

However, it is clear that (∃x.B(x))∨X is the least proposition satisfying
the above equivalence. Therefore we have P ⇔ (∃x.B(x)) ∨ X . ��

Theorem 4. If A ≡ ∃x.B(x) ∨ ¬∃x.B(x) is an instance of EMn+1, then AX is
derivable from EMn in IL2.

Proof. It is sufficient to prove the case where X is ⊥. We let P ≡ A⊥ and derive
P from EMn. By the above lemma, we can derive (∃x.B(x))X ⇔ (∃x.B(x))∨X
from EMn for arbitrary X . Hence,

P ⇔ (∃x.B(x))P ∨ ∀Y ≥ P.((∃x.B(x))Y → ⊥Y)
⇔ (∃x.B(x)) ∨ P ∨ ∀Y ≥ P.((∃x.B(x)) ∨ Y → ⊥ ∨ Y)
⇔ (∃x.B(x)) ∨ P ∨ ∀Y ≥ P.(∃x.B(x) → Y)
⇔ (∃x.B(x)) ∨ P ∨ (∃x.B(x) → P) (3)

Assume ∃x.B(x). Then we can derive P from (3). Therefore ∃x.B(x) → P . By
using (3) again, we have P . Thus we have derived P from EMn. ��

6 Conclusion and Future Work

In this paper, we proposed a new translational semantics for LCM. Unlike most
of translations for classical logic, our translation is not based on the idea of
double negation translation. By using the translation, we gave a new method of
algorithm extraction for LCM.

The author is working in a small project (the leader is Mariko Yasugi) for
developing prototype implementation of proof animation system for LCM. The
author plans to use our new translation and realizability interpretation to extract
algorithms from proofs in LCM. Backtracking games will be used to animate the
extracted algorithms.

We are also interested in proof theoretical study of our translation. It may
become a new useful tool to analyze sub-classical theories.

A New Translation for Semi-classical Theories — Backtracking without CPS 223

References

1. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An Arithmetical Hierarchy
of the Law of Excluded Middle and Related Principles. In: Proceedings of IEEE
Symposium on Logic in Computer Science (LICS), pp. 192–201 (2004)

2. Kobayashi, S., Tatsuta, M.: Realizability Interpretation of Generalized Inductive
Definitions. Theoretical Computer Science 131(1), 121–138 (1994)

3. Kobayashi, S.: Kyoukugen Keisan Kanou Suugaku no Geimu Imiron (English title:
Game Semantics of Limit Computable Mathematics). In: Proceedings of the 24th
JSSST Annual Symposia (2007)

4. Berardi, S.: An Semantic for Intuitionistic Arithmetic based on Tarski Games with
retractable moves. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp.
23–38. Springer, Heidelberg (2007)

5. Berardi, S.: Some intuitionistic equivalents of classical principles for degree 2 for-
mulas. Ann. Pure Appl. Logic 139(1-3), 185–200 (2006)

6. Berardi, S., Coquand, T., Hayashi, S.: Games with 1-Backtracking. In: Proceedings
of Games for Logic and Programming Languages (2005)

7. Berardi, S., Yamagata, Y.: A sequent calculus for 1-backtracking, Technical Report,
Turin University, CL&C 2006 (Submitted to the special issue of APAL for the
congress) (2006),
http://www.di.unito.it/∼stefano/Yamagata-Berardi-report.pdf

8. Coquand, T.: A Semantics of Evidence for Classical Arithmetic. Journal of Sym-
bolic Logic 60, 325–337 (1995)

9. Friedman, H.: Classically and intuitionistically provably recursive functions. In:
Scott, D.S., Muller, G.H. (eds.) Higher Set Theory. Lecture Notes in Mathematics,
vol. 699, pp. 21–28. Springer, Heidelberg (1978)

10. Hayashi, S., Nakata, M.: Towards Limit Computable Mathematics, Proceedings of
TYPES 2000, Lecture Notes in Computer Science 2277. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 125–144.
Springer, Heidelberg (2002)

11. Hayashi, S.: Mathematics based on incremental learning—Excluded middle and
inductive inference. Theoretical Computer Science 350, 125–139 (2006)

12. Hayashi, S.: Can Proofs be animated by games? Fundamenta Informaticae 77, 1–13
(2007)

13. Nakata, M., Hayashi, S.: A Limiting First Order Realizability Interpretation. Sci-
entiae Mathematicae Japonicae 55(3), 567–580 (2002)

14. Toftdal, M.: A Calibration of Ineffective Theorems of Analysis in a Hierarchy of
Semi-classical Logical Principles. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1188–1200. Springer, Heidelberg (2004)

15. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. I, II, North-
Holland, Amsterdam (1988)

http://www.di.unito.it/~stefano/Yamagata-Berardi-report.pdf

Undoing Dynamic Typing

(Declarative Pearl)

Nick Benton

Microsoft Research
nick@microsoft.com

Abstract. We propose undoable versions of the projection operations
used when programs written in higher-order statically-typed languages
interoperate with dynamically typed ones, localizing potential runtime
errors to the point at which a dynamic value is projected to a static
type. The idea is demonstrated by using control operators to implement
backtracking projections from an untyped Scheme-like language to ML.

1 Introduction

When working in a statically typed language one often has to deal with data
whose types cannot be fully determined, or at least, fully checked, at compile
time. Data read at run time from the console or persistent storage and calls to
dynamically-linked (local or remote) programs or services must be subject to
runtime checks if type safety is to be maintained.

In a typed language, dynamic data is usually given some rather uninforma-
tive ‘catch all’ static type; at a low level this might be string or byte[], whilst
higher level examples include Object, Dynamic and IUnknown. The interface
between the statically checked and unchecked worlds is provided by a collec-
tion of projection, (down)cast, coercion, retraction or unmarshalling operations
mapping values of the single dynamic type to various particular static types, and
complementary embedding, (up)cast, section or marshalling operations going the
other way. Projection operations in an ML-like language might have signatures
along the lines of:

val toInt : Dynamic -> int
val toBool : Dynamic -> bool
val toIntToInt : Dynamic -> (int->int)

but these operations are naturally partial. toInt, for example, will typically
raise an exception in the case that its argument turns out to be a Dynamic value
representing a string or a function. It is good practice to make this possibility
more explicit and instead type the projection with an option:

val toInt : Dynamic -> int option

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 224–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Undoing Dynamic Typing 225

The programmer then has to explicitly match on the returned value before using
it, making it harder to forget to deal with the case of failure.1

There are actually two rather different classes of projection. In the case that
values of type Dynamic carry an explicit representation of their types (usu-
ally called a tag, or runtime type information) and that representation can be
trusted, a projection operation can essentially just check the tag and, assuming
it matches, proceed to use the underlying value with no further checks. This
is the way many proposals for adding dynamic typing to statically typed lan-
guages work [1] and is common when one program unmarshalls values that were
originally marshalled to persistent storage by a (trusted) program written in the
same typed language.

The second case is that in which dynamic values are untagged, incompletely
tagged, or the tags are potentially unreliable. Safely projecting values of func-
tional types (or very large values of simple datatypes) cannot then be done all
in one go. This is generally the situation when making foreign calls to functions
written in an untyped (or differently-typed) language, or when calling a remote
function in another address space or over a network. Consider, for example, link-
ing to a remote service that is supposed to compute some function on integers.
The service may well have some attached metadata (e.g. WSDL) that we can
check at runtime to see that it conforms to the programmer’s expectation that
there is an operation there that accepts and returns integers. One would expect
a projection

val toIntToInt : url -> (int->int) option

that connects to the service to retrieve and check the metadata, returning NONE if
it fails to match and SOME f it matches, where f is an ML wrapper function that
sends the service a marshalled version of its argument and returns the unmar-
shalling of the service’s response. But we cannot necessarily trust the metadata
we went to all the trouble of checking, so the wrapper usually also incorporates
a check that every returned value is an integer, and raises an exception if that
ever fails. Now the programmer has also to deal with the possibility of failure
each time he applies the function wrapping the service; we should really have
made that possibility explicit by typing the projection as

val toIntToInt : url -> (int -> int option) option

where the pattern for general higher-order types is that we have to add an option
in every positive position. A useful point of view is that projection functions
wrap untyped values with code that dynamically monitors their adherence to a
contract associated with the type, in the sense of ‘Design by Contract’ [14,8].

Higher-order programming in the presence of all these potential runtime errors
is, however, painful. The situation is especially bad if one tries to deal with
1 One might choose instead to map inappropriate elements of Dynamic either to di-

vergence or to some more defined default value of the target type. Although the
first alternative is well-behaved from a denotational perspective, neither has good
software engineering properties.

226 N. Benton

more than one potentially-misbehaving untyped function at the same time (e.g.
passing one as an argument to another), in which case impedance matching is a
problem and the correct assignment of blame, and hence what error handling is
appropriate, can be tricky to ascertain.

What we would really like is to turn the second case into the first, at least
from the point of view of the programmer. The initial projection of a dynamic
value to a given static type may or may not succeed, but if it does then the
programmer should have a typed value in his hand that he can use without
further fear of failure. The message of this paper is that we can achieve this
goal by making projections undoable: the projection of a dynamic value to a
static type may provisionally succeed but subsequently be rolled back to fail
retrospectively should runtime type errors (contract violations) occur. We will
use control operators to give an implementation of undoable projections from an
untyped interpreted language to ML.

2 Background: Embedded Interpreters

In this section, based on an earlier paper [2], we briefly recall how embedding-
projection pairs may be used to translate higher type values between typed
(ML-like) and untyped (Scheme-like) languages, focussing, for concreteness, on
the situation in which the untyped language is the object language of an inter-
preter written in the typed metalanguage. The underlying semantic idea here is
just that of interpreting types as retracts2 of a suitable universal domain, which
goes back to work of Scott [17] in the 1970s, though the realization that this is
both implementable and useful in functional programming seems only to have
dawned in the mid 1990s [20].

Our starting point is an ML datatype modelling an untyped call-by-value
lambda calculus with constants:

datatype U = UF of U->U | UP of U*U | UI of int | US of string
| UUnit | UB of bool

An interpreter for an untyped object language, mapping abstract syntax trees
to elements of U is then essentially just a denotational semantics. We assume
the existence of a parser for a readable object language (typeset in italic) and
let pi : string -> U be the composition of the parser with the intepretation
function.

The idea of embedded interpreters is to define a type-indexed family of pairs
of functions that embed ML values into the type U and project values of type U
back into ML values. Here is the relevant part of the signature:

2 Recall that a section-retraction pair comprises two morphisms s : X → Y and
r : Y → X such that s; r = idX . We say X is a retract of Y . Embedding-projection
pairs are a special case: if X and Y are posets, s and r are monotone and additionally
r; s � idY then s is an embedding and r is a projection.

Undoing Dynamic Typing 227

signature EMBEDDINGS =
sig
type ’a EP
val embed : ’a EP -> (’a->U)
val project : ’a EP -> (U->’a)

val unit : unit EP
val bool : bool EP
val int : int EP
val string : string EP
val ** : (’a EP)*(’b EP) -> (’a*’b) EP
val --> : (’a EP)*(’b EP) -> (’a->’b) EP

end

For an ML type A, an (A EP)-value is a pair of an embedding of type A->U
and a projection of type U->A. The interesting part of the definitions of the
combinators on embedding/projection pairs is the case for function spaces: given
a function from A to B, we turn it into a function from U to U by precomposing
with the projection for A and postcomposing with the embedding for B; this
is why embeddings and projections are defined simultaneously. The resulting
function can then be made into an element of U by applying the UF constructor.
Projecting an appropriate element of U to a function type A->B does the reverse:
first strip off the UF constructor and then precompose with the embedding for
A and postcompose with the projection for B.

Embeddings and projections let one smoothly move values in both directions
between the typed and untyped worlds, as demonstrated in the following, rather
frivolous, example in which we project an untyped (and untypeable) fixpoint
combinator to an ML type and apply it to a function in ML:

- let val embY = pi "fn f=>(fn g=> f (fn a=> (g g) a))

(fn g=> f (fn a=> (g g) a)) "
val polyY = fn a => fn b=> project

(((a-->b)-->a-->b)-->a-->b) embY
val factorial = polyY int int

(fn f=>fn n=>if n=0 then 1 else n*(f (n-1)))
in factorial 5
end;

val it = 120 : int

The above is simple, neat and all works very nicely in the case that untyped
values play by the rules and are used correctly. But the code is something of
a minefield, being littered with deeply buried non-exhaustive Match and Bind
exceptions. Our earlier paper said

. . . these exceptions should be caught and gracefully handled, but we will
omit all error handling in the interests of space and clarity.

but, in fact, anything other than letting the exceptions propagate up to the
top is remarkably tedious and difficult to achieve by hand. Here we will show

228 N. Benton

how much of that error handling can be built into the embedding infrastructure
instead. The SML code that follows relies on call/cc, which is supported by
both SML/NJ and MLton (though MLton’s implementation takes time linear
in the current depth of the control stack). There is also a (linear time) call/cc
library for the OCaml bytecode compiler.

3 Retractable Retractions

There are various ways in which the simple embedded interpreter of our previous
work can go wrong. The first is that object programs can contain runtime errors
all by themselves, without any attempt being made to cast them to ML types.
So, whilst this is OK:

- pi "let val x = 4 in x ";
val it = UI 4 : U

this is not:

- pi "let val x = 4 in x 3 ";
uncaught exception Bind
[nonexhaustive binding failure]
raised at: Interpret.sml:37.45-37.63

As we are going to be playing fancy games with control flow shortly, it is a good
idea to replace these exceptions with something simpler and more explicit. To
this end, we add an explicit error constructor UErr to our universal type, as is
commonly done in denotational semantics [18, p.144][1]. The definition is now

datatype U = UF of U->U | UP of U*U | UI of int | US of string
| UUnit | UB of bool | UErr

and we modify the interpreter to yield UErr when it would previously have raised
an exception, which includes making all the language constructs strict in (i.e.
preserve) UErr.3 An extract of the interpreter code is shown in Figure 1; this
is entirely standard, though note that we have separated the binding times of
variable names and values in environments. We omit the definition of Builtins,
which uses embedding to add a few pervasives, including arithmetic and com-
parisons, to the environment.

We now turn to revising the embedding-projection pairs. As one might ex-
pect from our initial discussion, we change the signature to reflect the fact that
projection will now be partial:

3 One could make the code slightly shorter and more efficient by sticking with im-
plicit exceptions in place of UErr, but the choice we have made makes what is going
on slightly clearer. In particular, we do not have to worry about interactions be-
tween handlers and continuations, as it is now obvious that there are no potentially
uncaught exceptions lurking anywhere.

Undoing Dynamic Typing 229

signature EMBEDDINGS =
sig
type ’a EP
val embed : ’a EP -> ’a -> U
val project : ’a EP -> U -> ’a option

val int : int EP
val string : string EP
val unit : unit EP
val bool : bool EP
val ** : (’a EP)*(’b EP) -> (’a*’b) EP
val --> : (’a EP)*(’b EP) -> (’a->’b) EP

end

The matching structure makes unsurprising definitions of embedding-projection
pairs:

type ’a EP = (’a->U)*(U->’a option)
fun embed ((e,p) : ’a EP) = e
fun project ((e,p) : ’a EP) = p

and the instances at base types are also straightforward:

val int = (UI, fn (UI n) => SOME n | _ => NONE)
val string = (US, fn (US s) => SOME s | _ => NONE)
val unit = (fn ()=>UUnit, fn UUnit => SOME () | _ => NONE)
val bool = (UB, fn (UB b) => SOME b | _ => NONE)

The embedding-projection for products is only a little more complex:

infix **

fun (e,p)**(e’,p’) =
(fn (v,v’) => UP(e v, e’ v’),
fn uu => case uu

of UP (u,u’) => (case (p u, p’ u’)
of (SOME v, SOME v’) => SOME (v,v’)
| _ => NONE
)

| _ => NONE)

To embed a pair of ML values, we simply embed each component and wrap the
resulting pair of untyped values in the UP constructor. To project a value of type
U to a pair type, we first check that it is indeed a UP and then that we can
project each of the components in a pointwise fashion; if so, we return SOME of
the paired results, and otherwise we return NONE.

We have now reached the important and tricky part of the paper: dealing
with function types. Recall that our intuition is that whenever we have an ML

230 N. Benton

datatype Exp = EI of int (* integer constant *)

| EId of string (* identifier *)

| EApp of Exp*Exp (* application *)

| EP of Exp*Exp (* pair *)

| ELam of string*Exp (* lambda abstraction *)

| EIf of Exp*Exp*Exp (* conditional *)

| ... other clauses elided ...

(* interpret : Exp * (string list) -> U list -> U *)

fun interpret (e,static) =

case e of

EI n => (fn dynamic => (UI n))

| EId s => (case indexof (static,s) of

SOME n => fn dynamic => List.nth (dynamic,n)

| NONE => let val lib = Builtins.lookup s

in fn dynamic => lib

end)

(* if s not in static env, lookup in pervasives instead *)

| EP (e1,e2) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

in fn dynamic => case s1 dynamic of

UErr => UErr

| v1 => (case s2 dynamic of

UErr => UErr

| v2 => UP(v1, v2))

end

| EApp (e1,e2) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

in fn dynamic => case s1 dynamic of

UF(f) => f (s2 dynamic)

| _ => UErr

end

| ELam (x,e) => let val s = interpret (e, x::static)

in fn dynamic => UF(fn v=> case v of UErr => UErr

| _ => s (v::dynamic))

end

| EIf (e1,e2,e3) => let val s1 = interpret (e1,static)

val s2 = interpret (e2,static)

val s3 = interpret (e3,static)

in fn dynamic => case s1 dynamic of

UB(true) => s2 dynamic

| UB(false) => s3 dynamic

| _ => UErr

end

... other clauses elided ...

fun pi s = interpret (read s, []) []

Fig. 1. Revised Interpreter (extract)

Undoing Dynamic Typing 231

(* Recall:

type ’a EP = (’a->U)*(U->’a option)

val --> : (’a EP)*(’b EP) -> (’a->’b) EP

*)

infixr -->

fun (e,p)-->(e’,p’) =

(fn f => UF (fn u => case p u of SOME a => e’ (f a)

| NONE => UErr),

fn u => case u

of UF f => callcc (fn k =>

SOME (fn a =>

case p’ (f (e a))

of SOME b => b

| NONE => throw k NONE))

| _ => NONE)

Fig. 2. Embedding and projection for functions

value of type A in our hand, then we can assume it really will behave itself as
an element of type A. In fact, we might have obtained the value by projecting
some ill-behaved untyped code, but we will arrange things so that the projected
value is ‘self-policing’ – should it ever violate the contract associated with A
then it will backtrack to the point of projection. Hence the violation will never
be observable at the actual point of use.

With that idea in mind, the embedding component for function types can be
fairly straightforward. Just as we made the interpreter ‘total’, in the sense that
dynamic errors are explicitly reified as the UErr value, the embedded version of
f :A->B should be a ‘total’ function from U to U that attempts to project its
argument to type A, returning UErr if this fails, and returning the embedding
at type B of f applied to the projected value otherwise. In code, assuming p is
the projection for A and e’ is the embedding for B, the embedding for A->B is

fn f => UF (fn u => case p u of SOME a => e’ (f a)
| NONE => UErr)

of type (A->B)->U. This is simple because nobody is at ‘fault’ here yet: we
can assume the ML function we’re embedding will be well-behaved on the given
domain and we merely extend it to return UErr on the rest of U.

We now need to define projection for a function type A->B, which will be of
type U->((A->B)option). In the case that the argument value is not even a UF,
it seems natural to return NONE immediately, though we could have chosen to
delay even this check until we try to apply the projected function. Otherwise we
have a function f of type U->U, which can clearly be turned into one, call it f’,
of type A->(B option) by precomposition with the (total) embedding for A, e,
and postcomposing with the (partial) projection for B, p’. So

232 N. Benton

f ′ = p’ ◦ f ◦ e
However, we want something of type (A->B) option, for which we need a con-
trol operator. We grab the continuation k that is expecting a value of type
(A->B) option and provisionally return SOME g where g : A->B is a wrapper
around f’ that returns b when f’ returns SOME b and throws NONE (of type
(A->B) option) to the captured continuation k should f ′ ever return NONE (of
type B option). Putting this together with the embedding component, we arrive
at the definition of the --> combinator that is shown in Figure 2.

The code shown in the figure looks rather simple, but the consequences of the
way the uses of control are intertwined with the induction on types are perhaps
not obvious, so we now present a series of examples to try to understand what
we just did.

4 Examples

Our first set of examples are not intended to be representative of actual uses,
but merely a set of test cases to demonstrate and check the behaviour of our
earlier definitions. Since we want to be able to see which coercions fail, we make
our test functions return values of the following type:

datatype ’a TestResult = Fail of string | Result of ’a

We start with an untyped function that behaves like successor on small inte-
gers but returns a unit value on larger ones:

- val badsucc = pi "fn n => if n < 4 then n+1 else () ";
val badsucc = UF fn : U

and define a test function that attempts to project an untyped value down to
the ML type int -> int and then maps the result over a list of integers:

- fun testIntToInt v l = case (project (int-->int) v)
of SOME f => Result (map f l)
| NONE => Fail "projection to int->int";

val testIntToInt = fn : U -> int list -> int list TestResult

Now, we try our test out on a list of small integers:

- val test1 = testIntToInt badsucc [1,2,3];
val test1 = Result [2,3,4] : int list TestResult

All the integers in the test list are small and badsucc behaves like a function of
type int -> int on all of them, so we don’t see any violation. Let’s extend the
list a little:

- val test2 = testIntToInt badsucc [1,2,3,4,5,6,7];
val test2 = Fail "projection to int->int" : int list TestResult

Undoing Dynamic Typing 233

This time, badsucc behaves itself for the first three calls then violates its contract
on the fourth, at which point we backtrack to the original point of projection
and make that fail retrospectively. Alternatively, of course, we can project at
int -> unit, in which case the sets of arguments exhibiting success and failure
are swapped:

- fun testIntToUnit v l = case (project (int --> unit) v)
of SOME f => Result (map f l)
| NONE => Fail "projection to int->unit";

val testIntToUnit = fn : U -> int list -> unit list TestResult

- val test3 = testIntToUnit badsucc [7,6,5,4];
val test3 = Result [(),(),(),()] : unit list TestResult

- val test4 = testIntToUnit badsucc [7,6,5,4,3,2,1];
val test4 = Fail "projection to int->unit" : unit list TestResult

Note that each call to project, even on the same value, yields a new point to
which we can backtrack. Let’s check that we’ve stacked things up in the right
order to maintain the property that embedding followed by projection is the
identity, even on ill-behaved values:

- fun testreembed a1 a2 =
case project (int --> int) badsucc
of NONE => Fail "first projection"
| SOME first =>

let val r1 = first a1
val reembed = embed (int --> int) first

in case project (int --> int) reembed
of NONE => Fail "second projection"
| SOME second => let val r2 = second a2

in Result (r1,r2)
end

end;
val testreembed = fn : int -> int -> (int * int) TestResult

- val test5 = testreembed 2 3;
val test5 = Result (3,4) : (int * int) TestResult

- val test6 = testreembed 2 4;
val test6 = Fail "first projection" : (int * int) TestResult

Although the violation is only triggered by the application of the reprojected
value second to 4, we have correctly unwound all the way to the initial projec-
tion.

Now let’s try some higher-order examples:

- fun testho A x y =
case project (A-->int) x

234 N. Benton

of NONE => Fail "function projection"
| SOME f => (case project A y

of NONE => Fail "argument projection"
| SOME g => Result (f g));

val testho = fn : ’a EP -> U -> U -> int TestResult

- val test7 = testho (int-->int) (pi "fn f => f 1 + f 2 ")
(pi "fn n => n + 1 ");

val test7 = Result 5 : int TestResult

- val test8 = testho (int-->int) (pi "fn f => f 1 + f 2 ")
(pi "fn n => if n = 1 then 7 else () ");

val test8 = Fail "argument projection" : int TestResult

- val test9 = testho (int-->int) (pi "fn f => f 1 + f true")
(pi "fn n => n + 1 ");

val test9 = Fail "function projection" : int TestResult

In these tests, we try to project the first untyped program to (int->int)->int,
the second to int->int and then apply one to the other. We can see that in
test7, both are well-behaved, in test8 it’s the argument that goes wrong whilst
in test9 the higher order function is at fault.

What should happen if we try to combine more than one faulty value? We
are doing dynamic checking of the contracts: projections are only rolled back in
the case that the particular use that is made of them exposes a violation. The
checking is eager, in that the context C[·] that tests a projected value v should
not have previously violated its contract at the point when the v does something
wrong; otherwise we should already have rolled back some other projected value
in C[·]. So when we combine more than one projected value, we roll back the
first one which detectably goes wrong in the execution trace:

- val test10 = testho (int-->int) (pi "fn f => f 1 + f true ")
(pi "fn b => if b then 3 else 4 ");

val test10 = Fail "argument projection" : int TestResult

- val test11 = testho (int -->int) (pi "fn f => f true + f 1 ")
(pi "fn b => if b then 3 else 4 ");

val test11 = Fail "function projection" : int TestResult

In test10, the error is signalled in the argument. This is because the first call
made by the higher-order function passes an integer, as per the contract, and
then the argument tries to use that in a conditional, violating its contract. In
test11, we have swapped the order of evaluation in the addition so that the
first dynamically occurring violation is the attempt by the higher order function
to pass true in place of an integer; in this case the error is detected in the
higher-order function. Here’s a more complex example:

Undoing Dynamic Typing 235

- val test12 = testho ((int-->int)-->(int-->int))
(pi "fn f => f (f (fn n => n+1)) 5 ")
(pi "fn g => if g 2 = 3 then fn n => true

else fn n => n ");
val test12 = Fail "argument projection" : int TestResult

In this case, the outer call to the function bound to f passes in a function that is
not of type int->int, but that function was itself obtained by the inner call to
f, which was with a well-behaved argument. Hence blame is correctly assigned
to the second of the original terms.

Finally, we present a toy version of a marginally more realistic example. Con-
sider making queries on an external database, modelled as a function that takes
a query predicate on strings (of type string -> bool) and returns a function of
type int -> string that enumerates the results. Here are some definitions in
the untyped language that construct three different purported databases, using
LISP-style lists internally (represented as nested pairs with the unit value for
nil):

- fun mkdb ds = pi ("let fun query l f n =

if isnil l then \"\"

else if f (car l)

then if n=0 then (car l)

else query (cdr l) f (n-1)

else query (cdr l) f n

in query " ^ ds)
val mkdb = fn : string -> U

- val db1 = mkdb "(\"um\",(\"dois\",(\"tres\",(true,()))))"
- val db2 = mkdb "(\"un\",(2,(\"trois\",(\"quatre\",()))))"
- val db3 = mkdb "(\"one\",(\"two\",(\"three\",(\"four\",()))))"

Note that the first two contain some non-string values. The following function
takes a list of untyped values and returns the first one that projects correctly to
our ML type for databases:

- fun selectdb [] = (fn f => fn n => "")
| selectdb (x::xs) =

case project ((string --> bool) --> (int --> string)) x
of NONE => selectdb xs
| SOME db => db

val selectdb = fn : U list -> (string -> bool) -> int -> string

Now we can try some queries:

- val test15 = let val thedb = selectdb [db1,db2,db3]
val results = thedb (fn s => String.size s > 3)

in [results 0, results 1]
end

236 N. Benton

val test15 = ["dois","tres"] : string list

- val test16 = let val thedb = selectdb [db1,db2,db3]
val results = thedb (fn s => String.size s > 3)

in [results 0, results 1, results 2]
end

val test16 = ["three","four",""] : string list

The first database in the list produces two results without violating the contract,
so we get the answers from that database. When we ask for more results, however,
the first database tries to apply the filter to a boolean, so gets rolled back; we
then try the second database, which also fails because it contains an integer, and
finally end up getting all our results from the third one.

5 Discussion

We have shown how continuation-based backtracking combines smoothly with
type indexed embedding-projection pairs to yield a convenient form of dynamic
contract checking for interoperability between typed and untyped higher-order
languages, localizing runtime errors to a single point of failure.

Extensions of statically-typed languages with various forms of dynamic type
have been well-studied (see, for example, [1,10]), but undoable projections have
not, as far as I’m aware, been proposed before.

The use of embedding-projection pairs to define type-indexed functions in
ML-like languages is attributed by Danvy [6] to Filinski and to Yang [20], both
of whom used it to implement type-directed partial evaluation [4], which in-
volves type-indexed functions that appear at first sight to call for dependent
types. Rose [16] describes an implementation of TDPE in Haskell that uses type
classes to pass the pairs representing types implicitly. Kennedy and I have pre-
viously used it for writing picklers [12] and interpreters [2], respectively. Similar
type-directed constructions have also been used in implementing printf-like
string formatting [5] and in generic programming. Ramsey has also applied the
technique for embedding an external interpreter for a scripting language (Lua)
into OCaml programs [15].

Control operators have, of course, been used to implement various other forms
of backtracking before, including that of logic programming languages. Never-
theless, getting the apparently simple code here correct is not entirely trivial
(my first couple of attempts were more complex and subtly wrong).

It remains to be seen whether or not the technique presented here is actually
useful in practical situations. Even before one worries about the specific techni-
calities, many reasonable people believe that experience with RPC, distributed
objects, persistent programming, and so on, all indicates that trying to hide the
differences between operations with widely varying runtime costs, failure models
or lifetimes is fundamentally a bad idea – the distinctions should be reflected
in the language because programmers need to be aware of them. Holding onto

Undoing Dynamic Typing 237

continuations costs space, whilst the possibility of backtracking over expensive
computations certainly doesn’t make reasoning about time or space behaviour
any easier.

There is also the issue of what can be undone. We have been implicitly as-
suming that the untyped programs that we project, and the typed contexts
into which we project them, do not themselves involve side-effects other than
potential divergence, as these will not be undone by throwing to the captured
continuation. One could certainly extend our technique to effects that are inter-
nal to the language, such as uses of state or other uses of control, if one were
prepared to modify the compiler, runtime system or bits of the basis library (as
in previous work on transactions in ML [9]). But the most exciting examples,
namely those that involve external I/O, unfortunately concern side-effects that
are rather hard to roll back automatically and generically. If I’ve sent you some
messages and then you start to misbehave, the best general thing I can do is
break off further communication with you; I certainly can’t unsend the messages.
That suffices in the case of pure computations, but in the stateful case a general
solution seems to require at least wrapping the underlying messages in a more
complex fault-tolerant protocol, and probably introducing explicit transactional
commitment points, beyond which rollbacks would no longer be possible. Indeed,
explicitly delimiting the the extent of possible rollbacks may be advantageous
even in the case of purely internal effects.

The semantics we have chosen to implement here tracks type errors rather
strictly along the control flow: any violation will cause the guilty projection
to be undone, even if the value that is eventually produced is well-behaved. A
small change in the interpreter code to remove strictness in UErr yields a laxer,
more data-dependent, semantics, in which ‘benign’ errors are ignored; this might
be useful in some circumstances, but seems harder to reason about and a less
natural fit with call-by-value languages.

It would be good to formulate and prove correctness of the code we have
presented. The problem here seems not to be one of proof technique, but in
coming up with a statement of correctness that covers the correct assignment
of blame in the case of multiple ill-behaved untyped programs and which is
intuitively significantly clearer than the code itself. One starting point might be
the operational semantics for interoperability between ML-like and Scheme-like
languages recently described by Matthews and Findler [13].

A second, and perhaps more interesting, line of further work is to extend
the idea from dynamic checking of the interface between typed and untyped
languages to recovery in more general higher-order contract monitoring. Runtime
checking of contracts, and the associated issue of blame assignment, have been
extensively studied in recent years (see, for example, [8,7,11,3,19]) and the kind
of ‘transactional’ recovery mechanism described here seems eminently applicable
in that setting.

Thanks to Josh Berdine, Olivier Danvy, Andrzej Filinski, Norman Ramsey
and the referees for many useful comments on earlier drafts of this paper.

238 N. Benton

References

1. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically-
typed language. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13(2) (1991)

2. Benton, N.: Embedded interpreters. Journal of Functional Programming 15(4)
(2005)

3. Blume, M., McAllester, D.: Sound and complete models of contracts. Journal of
Functional Programming 16(4/5) (2006)

4. Danvy, O.: Type-directed partial evaluation. In: Proceedings of the 23rd ACM
Symposium on Principles of Programming Languages (POPL), ACM Press, New
York (1996)

5. Danvy, O.: Functional unparsing. Journal of Functional Programming 8(6) (1998)
6. Danvy, O.: A Simple Solution to Type Specialization. In: Larsen, K.G., Skyum, S.,

Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, Springer, Heidelberg (1998)
7. Findler, R.B., Blume, M.: Contracts as Pairs of Projections. In: Hagiya, M., Wadler,

P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 226–241. Springer, Heidelberg (2006)
8. Findler, R., Felleisen, M.: Contracts for higher-order functions. In: Proceedings of

the International Conference on Functional Programming (ICFP) (2002)
9. Haines, N., Kindred, D., Morrisett, J.G., Nettles, S.M., Wing, J.M.: Composing

first-class transactions. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 16(6) (1994)

10. Henglein, F.: Dynamic typing. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS,
vol. 582, Springer, Heidelberg (1992)

11. Jeuring, J., Hinze, R., Löh, A.: Typed Contracts for Functional Programming. In:
Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 208–225. Springer,
Heidelberg (2006)

12. Kennedy, A.: Functional pearl: Pickler combinators. Journal of Functional Pro-
gramming 14(6) (2004)

13. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
In: Proceedings of the 34th ACM Symposium on Principles of Programming Lan-
guages (POPL) (2007)

14. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1992)
15. Ramsey, N.: Embedding an interpreted language using higher-order functions and

types. Journal of Functional Programming (to appear, 2008)
16. Rose, K.: Type-directed partial evaluation in Haskell. In: Preliminary Proceedings

of the 1998 APPSEM Workshop on Normalization by Evaluation, number NS-98-1
in BRICS Notes (1998)

17. Scott, D.: Data types as lattices. SIAM Journal of Computing 4 (1976)
18. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, Cambridge (1977)
19. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: ACM Work-

shop on Scheme and Functional Programming (2007)
20. Yang, Z.: Encoding types in ML-like languages. In: Proceedings of the 3rd ACM

SIGPLAN International Conference on Functional Programming (ICFP) (Septem-
ber, 1998)

Typed Dynamic Control Operators

for Delimited Continuations

Yukiyoshi Kameyama and Takuo Yonezawa

Department of Computer Science, University of Tsukuba
kameyama@acm.org, yone@logic.cs.tsukuba.ac.jp

Abstract. We study the dynamic control operators for delimited contin-
uations, control and prompt. Based on recent developments on purely
functional CPS translations for them, we introduce a polymorphically
typed calculus for these control operators which allows answer-type mod-
ification. We show that our calculus enjoys type soundness and is com-
patible with the CPS translation. We also show that the typed dynamic
control operators can macro-express the typed static ones (shift and
reset), while the converse direction is not possible, which exhibits a
sharp contrast with the type-free case.

Keywords: Type System, Delimited Continuation, Dynamic Control
Operator, CPS Translation, Polymorphism, Expressivity.

1 Introduction

Delimited continuations represent not the rest of the computation as with tradi-
tional continuations [18], but only part of the rest of the computation. As such,
delimited continuations have been used to model backtracking in contrast to
traditional continuations that are used to model jumps.

In direct style, traditional continuations are accessed with control operators
such as call/cc. There is, however, more variety for delimited continuations:

– Felleisen [12] proposed a control delimiter to signify part of an evaluation
context, or a delimited continuation. This lead to the new control operators
control and prompt, which are called dynamic control operators.

– Danvy and Filinski discovered that delimited continuations are supported by
an already existing formalism of 2CPS, the image of iterated CPS transla-
tions. They proposed new control operators shift and reset in the direct-
style counterpart [9]. They are called static control operators.

Since these proposals, the static control operators have been intensively stud-
ied while the dynamic ones are relatively less studied. For shift/reset, there
are a number of theoretical results [13,14] as well as useful examples in partial
evaluation, one-pass CPS translation, and mobile codes, while we do not find
many corresponding works for control/prompt in the literature, partly due to
the difficulty in reasoning about the dynamic features of control/prompt.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 239–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 Y. Kameyama and T. Yonezawa

Recently, several authors have started to obtain better understanding for dy-
namic ones, and to connect dynamic and static ones. Shan [7] macro-expressed
control and prompt in terms of shift and reset using recursive types. (See
also Kiselyov’s work [15].) Biernacki, Danvy, and Millikin [6] derived a CPS
translation for control and prompt from a definitional abstract machine, and
gave another encoding of control/prompt by shift/reset. Dybvig, Peyton
Jones, and Sabry [11] gave a uniform monadic framework for delimited continu-
ations including control/prompt. However, no work has studied the direct-style
type system for control/prompt in a way comparative to the type system for
shift/reset. The proposed encodings were done in either type-free or recur-
sively typed settings,1 and the proposed CPS translations assumed a restricted
direct-style type system in that the control effect of “answer-type modification”
was not allowed. We think this effect is indispensable for delimited continuations,
for instance, it is needed to type the printf function in direct style [8,1].

In this paper, we propose a direct-style type system for control and prompt,
which allows answer-type modification, does not need recursive types, and has
ML-like let-polymorphism. We derive the type inference rules from the type
structure for the CPS translations for control and prompt recently developed by
the above mentioned works. The type system in this paper is a proper extension
of that in our previous work [20], which does not allow answer-type modification.
We show that our type system enjoys Subject Reduction and Progress properties,
and that types are preserved by the CPS translation. The first two properties
constitute type soundness, and the third property is necessary for a semantical
study.

As an application of our type system, we compare the expressivity of typed
control/prompt and that of typed shift/reset. In the type-free setting, they
are known to be equally expressive [7,15,4,6]. However, there exists a big asym-
metry in the complexity of these encodings, and a question remained whether
control/prompt is strictly more expressive than shift/reset under an ap-
propriate typed setting (without recursive types). In this paper we answer this
question. Namely, we show:

– typed control/prompt can macro-express typed shift/reset, while
– typed shift/reset cannot macro-express typed control/prompt,

where the type system for shift/reset is the most expressive type system by
Asai and Kameyama [2]. This result contrasts with the type-free case.

This paper is organized as follows: in Section 2 we briefly explain the control
operators for delimited continuations, and in Section 3 we review the functional
CPS translation in the literature. The subsequent three sections are original to
this paper: in Section 4 we introduce the type systems for the dynamic control
operators, and in Section 5 we give several properties for the type systems. In
Section 6, we compare the expressive power of typed control/promptwith typed
shift/reset. Section 8 concludes.
1 We distinguish (general) recursive types from inductive types in that the former

may contain negative occurrences of the type variable being taken the fixed point,
for instance, μX.(X → int) where μ is for the fixed point operator.

Typed Dynamic Control Operators for Delimited Continuations 241

2 Informal Explanation of control and prompt

We begin with the examples by Biernacki et al. [6] listed in Figure 1 written in
Standard ML syntax.

The functions foo and bar have type int list -> int list, and differ in
the names for control operators only: shift and reset for the former and
control and prompt for the latter. Both shift and control capture evalua-
tion contexts up to the closest delimiter (reset and prompt, resp.) Given the
list [1,2,3], the function foo evaluates as:

foo [1,2,3] � <visit (shift (fn k => 1::(k [2,3])))>

� <let k = <visit • > in 1::(k [2,3]) end>

� <1::<visit [2,3]>>

� <1::<let k = <visit • > in 2::(k [3]) end>>

� . . .

� <1::<2::<3::nil>>> � [1,2,3]

where < . . . > denotes the delimiter inserted by reset, and <visit •> denotes
the delimited evaluation context (delimited continuation) captured by shift
with • being the hole in it. The expression <v> evaluates to v itself when v is a
value, hence the result of this computation is identical to the argument.

The evaluation of bar proceeds as follows (the delimiter is denoted by #):

bar [1,2,3] � #(visit (control (fn k => 1::(k [2,3]))))

� #(let k = (visit •) in 1::(k [2,3]) end)

� #(1::(visit [2,3]))

� #(let k = (1::(visit •)) in 2::(k [3]) end)

� #(2::(1::(visit [3])))

� . . .

� #(3::(2::(1::nil))) � [3,2,1]

fun foo xs =

let fun visit nil = nil

| visit (x::xs) = visit (shift (fn k => x::(k xs)))

in reset (fn () => visit xs) end

fun bar xs =

let fun visit nil = nil

| visit (x::xs) = visit (control (fn k => x::(k xs)))

in prompt (fn () => visit xs) end

Fig. 1. List-copying and list-reversing functions

242 Y. Kameyama and T. Yonezawa

The evaluation context captured by control is the whole context since there is
no other delimiters. Hence, we obtain a a reversed list as the result of computa-
tion.

The operational behavior for each set of control operators can be formalized
by reduction rules. Let v and P denote a value and a call-by-value evaluation
context such that no delimiter encloses the hole, resp. Then we have the reduction
rules as follows:

(For shift/reset) 〈P [Sc.e]〉 → 〈let c = λx.〈P [x]〉 in e〉
(For control/prompt) # (P [Fc.e]) → # (let c = λx.P [x] in e)

Here Sc.e corresponds to (shift (fn c => e)), and 〈e〉 to (reset (fn () =>
e)) in the ML implementation in the previous subsection. Similarly, # e is
(prompt (fn () => e)), and Fc.e is (control (fn c => e)).

Besides the names for control operators, the only difference between them is
whether the captured delimited continuation has an extra reset or not: λx.〈P [x]〉
for the former, and λx.P [x] for the latter. This small difference in syntax raises
a big difference in semantics. Suppose P has other occurrences of shift or
control, and the captured delimited continuation is applied to a value v in a
then-current continuation E which may have a delimiter that encloses the hole.

– In the former, we evaluate E[〈P [v]〉] in which other occurrences of shift
in P will be delimited by this reset (unless they are “escaped” in function
closures). Namely, the corresponding delimiter for these shift is determined
when the delimited continuation is captured.

– In the latter, we evaluate E[P [x]] in which other occurrences of control
ought to be delimited by prompt in E. (Note that P does not have any
prompt which encloses the hole). Consequently, the corresponding delim-
iter for these control is determined not when it is captured, but when the
delimited continuation is used.

Hence the former is called static, and the latter is called dynamic by analogy with
static and dynamic binding in Scheme and Lisp [5]. The static/dynamic nature
of control operators has an impact on their implementation. For shift/reset, a
delimited continuation can be represented by an ordinary, composable function,
which leads to a simple CPS translation [9,10]. For control/prompt, we need
to keep the captured delimited continuations as they are, until they are actually
used, which needs an extra machinery.

3 A CPS Translation for control/prompt

We regard a CPS translation as the fundamental analysis tool for control oper-
ators. For control and prompt, three such translations are known: Shan’s [7],
Dybvig, Peyton-Jones, and Sabry’s [11], and Biernacki, Danvy and Millikin’s [6].
In this paper we use (a variant of) the last one since it is the simplest. We could
use Shan’s one as well.

Typed Dynamic Control Operators for Delimited Continuations 243

v ::= d | x | λx.e value

e ::= v | e1e2 | Fc.e | # e | let x = e1 in e2

| if e1 then e2 else e3 expression

P ::= [] | Pe | vP

| let x = P in e | if P then e1 else e2 pure evaluation context

E ::= [] | Ee | vE

| let x = E in e | if E then e1 else e2 | # E evaluation context

Fig. 2. Syntax of the language with control/prompt

(λx.e)v � e[v/x]

if true then e1 else e2 � e1

if false then e1 else e2 � e2

let x = v in e � e[v/x]

(P [Fc.e]) � # (let c = λx.P [x] in e)

v � v

Fig. 3. Reduction rules

Figure 2 gives the syntax of our source language where d is constant and x
and c are variables. The expression Fc.e is a construct for control in which
c is a bound variable. The expression # e is the one for prompt. Variables are
bound by λ or F , the set of free variables in e is denoted by FV(e), and we
identify α-equivalent expressions. Sequencing a; b is an abbreviation of (λx.b)a
with x �∈ FV(b). In a pure evaluation context P , no prompt may enclose its hole
[], while a (general) evaluation context E allows such occurrences of prompt.
Figure 3 gives call-by-value operational semantics to this language where e[v/x]
represents the result of capture-avoiding substitution.

Figure 4 defines the CPS translation for this language as a variant of the one
given by Biernacki et al. The differences are: (1) they gave a 2CPS translation
whch is an iterated translation (its image takes two continuations as its argu-
ments), while we use a more traditional 1CPS translation, and (2) we extend
the source language with constant, conditional, and let.

The target language of this translation is a call-by-value lambda calculus with
constants, conditional, and let as well as list-manipulating constructs such as
Nil, cons (denoted by ::), append (@) and a destructor (case). Note that the
translation for let expression is only meaningful for the typed source language
(given in the next section), and we have included it in Figure 4 only to save
space. For a type-free source language, we can define it as [[let x = e1 in e2]] =
[[(λx.e2)e1]].

244 Y. Kameyama and T. Yonezawa

[[]] : SourceTerm → Cont → Trail → TargetValue

[[V]] = λk t. k (V)∗ t

[[e1e2]] = λk t. [[e1]](λm1 t1. [[e2]](λm2 t2. m1 m2 k t2) t1) t

[[if e1 then e2 else e3]] = λk t. [[e1]](λm1 t1. if m1 then [[e2]] k t1 else [[e3]] k t1) t

[[let x = e1 in e2]] = λk t. let x = ([[e1]] θ1 Nil) in [[e2]] k t

[[# e]] = λk t. k([[e]] θ1 Nil) t

[[Fc.e]] = λk t. let c = λx k′ t′. k x (t @ (k′ :: t′)) in [[e]] θ1 Nil

()∗ : SourceValue → TargetValue

(d)∗ = d for constant

(x)∗ = x for a variable

(λx.e)∗ = λx k t. [[e]] k t

θ1 = λx t. case t of

| Nil ⇒ x

| (k1 :: t1) ⇒ k1 x t1

Fig. 4. 1CPS translation for the language with control and prompt

Let us see the types in Figure 4, although these types should be considered
informal, and only for explanation. The types SourceTerm, SourceValue, Cont,
TargetValue, are those for terms and values in the source language, and those
for continuations and values in the target language, resp.

The type Trail is new to their CPS translation. Recall that, in order to rep-
resent the dynamic behavior of control/prompt, we need to keep the delimited
continuations until they are used. A trail is a list of delimited continuations to
store these continuations. Thus, we may informally define Cont and Trail as
follows:

Cont = TargetValue → Trail → TargetValue

Trail = List(Cont)

This “definition” needs recursive types, which will be examined in the next
section.

Next, we look at the term-level translation in Figure 4. For the constructs
other than control operators, the translation is the same as the standard (e.g.
Plotkin’s) translation except that it passes trails without changing them.

The prompt-term # e initializes its continuation and trail: in its translation
[[# e]], [[e]] is applied to θ1 and the empty trail Nil. The continuation θ1 acts as
the identity continuation (the empty evaluation context).

The control-term Fc.e captures a delimited continuation (and initializes the
continuation and the trail): it captures the current delimited continuation k for

Typed Dynamic Control Operators for Delimited Continuations 245

a future use of c. When c is applied to some value, the captured continuation k
is “composed” with the then-current continuation k′. Rather than simply com-
posing two delimited continuations, we store (in the trail) the list of all the
captured delimited continuations except the current one, namely, we extend the
then-current trail t′ to a new trail t @ (k′ :: t′) and use k as the current continua-
tion. Continuations stored in the trail will be used when the current continuation
becomes empty (i.e. θ1).

Note that we can easily extend our source language and the CPS translation
with practical language constructs such as the fixed point operator and primitive
functions.

Finally, a CPS translation for a complete program e is defined as [[e]]θ1Nil.

4 Type System

We introduce a polymorphic type system for control/prompt in this section.
Types are an important facility in most programming languages to classify terms
and also to ensure a certain kind of safety for computation. We think that, for
control/prompt to be used by ordinary programmers, a sound type system is
definitely needed.

4.1 Design of Type System

Our strategy to construct a type system for control/prompt is basically the
same as that for shift/reset [2]: given a term e, we infer the most general type
of its CPS translation [[e]], and use this type as the type for e. There is, however,
two problems in this strategy: (1) the target terms of the CPS translation for
control/prompt need recursive types if we assign types, and there is no notion
of the most general type in a type system with recursive types, and (2) we need
arbitrary many type variables to precisely represent types of the CPS translation.

The first problem already appears if we type the identity (delimited) contin-
uation θ1. Assuming the type of trails is List(τ) for some τ , θ1 must have the
type α → List(X) → α for some α, where X = α → List(X) → α. Hence we
need some sort of recursive types.

The second problem is this: Recall that Cont and Trail are informally defined
as Cont = TargetValue → Trail → TargetValue and Trail = List(Cont).
When the source language is typed in some way, the type TargetValue should
be instantiated by more specific types, and in general, a trail has the type:

List(α1 → List(α2 → List(. . . List(αn → · · · → βn) . . .) → β2) → β1)

for different αi and βi. Apparently, we cannot represent these types in a finite
manner.

We give a simple solution to these problems based on the observation that
most (if not all) examples with control/prompt in the literature can be typed
under the following simple restriction:

– In a trail type, all αi and βi is the same type.

246 Y. Kameyama and T. Yonezawa

This means that any trail must have type μX.List(τ → X → τ) for some type
τ where μ is for recursive types. In the sequel, we adopt this restriction, and
write Trail(τ) for this type. Note that the restriction does not constrain the
type of continuations, that is, a continuation may have type α → Trail(τ) → β
for different types α, β, and τ .

We think that this restriction is not too strong, since, most (if not all) exam-
ples with control/prompt in the literature follow this restriction (list-reversing
function and several variations of search programs [6]). Also we will see later that
the typed control/prompt calculus under this restriction can simulate typed
shift/reset calculus, which has many interesting examples.

Under this restriction, the target terms of the CPS translation can be typed in
the ordinary type system (with let-polymorphism, but without recursive types),
in which the most general type always exists (if typable), and, therefore, the first
problem is also solved.

Discussion. An anonymous reviewer has suggested us that, we could exclude
the circularity in the trail types by introducing an inductive (not recursive)
structure. One way to achieve it is: if we change the definition of the trail type
from Trail = List(Cont) to

Trail(n) = Trail(0) | (Cont× Trail(n − 1))

where n denotes the length of the list, then we can avoid the circularity (re-
cursiveness) of the trail type. However, the use of dependent types drastically
complicates the type structure of the target calculus (and possibly the corre-
sponding source type system). Moreover, it is not our goal to obtain a strongly
normalizing calculus for control/prompt by constraining the source type system
artificially. Rather, we took Biernacki et al.’s CPS translation as a good starting
point, and based on it, we tried to construct a natural type system which is
harmonious with their CPS translation.

4.2 Definition of Type System

Now we introduce a type system for control/prompt.
Types and type contexts are defined by:

α, β · · · ::= b | t | α → (β, γ, δ/τ) monomorphic types
A ::= α | ∀t.A polymorphic types
Γ ::= [] | Γ, x : A type contexts

where b is a basic type (including bool), t is a type variable, and α → (β, γ, δ/τ)
is a function type whose meaning will be made clear later. FTV(A) denotes the
set of free type variables in A.

The type system has two forms of judgements, and the first form is:

Γ � e : α, β, γ/τ

Typed Dynamic Control Operators for Delimited Continuations 247

(x : A ∈ Γ and α ≤ A)

Γ �p x : α
var

(d is constant of type b)

Γ �p d : b
const

Γ, x : α � e : β, γ, δ/τ

Γ �p λx.e : α → (β, γ, δ/τ)
fun

Γ �p e : α

Γ � e : α, β, β/τ
exp

Γ � e1 : α → (β, γ, δ/τ), ε, ρ/τ Γ � e2 : α, δ, ε/τ

Γ � e1e2 : β, γ, ρ/τ
app

Γ � e1 : bool, δ, γ/τ Γ � e2 : α, β, δ/τ Γ � e3 : α, β, δ/τ

Γ � if e1 then e2 else e3 : α, β, γ/τ
if

Γ �p e1 : ρ Γ, x : Gen(ρ; Γ) � e2 : α, β, γ/τ

Γ � let x = e1 in e2 : α, β, γ/τ
let

Γ � e : τ, τ, β/τ

Γ �p # e : β
prompt

Γ, c : α → (τ, τ, β/τ) � e : ρ, ρ, γ/ρ

Γ � Fc.e : α, β, γ/τ
control

Fig. 5. Type Inference Rules

where Γ is a type context, α, β, γ, and τ are types, and e is an expression. It
means that, under the type context Γ , e is an expression of type α, with the
answer type modification2 from β to γ, and the trail type is τ . The roles of the
additional types in the judgement can be made clearer by CPS translating it:

Γ ∗ �[[e]] : Cont(α∗, β∗/τ∗) → Trail(τ∗) → γ∗

with
Trail(τ∗) = μX.List(τ∗ → X → τ∗)

Cont(α∗, β∗/τ∗) = α∗ → Trail(τ∗) → β∗

The second form of judgements is:

Γ �p e : α

which means e is a pure (effect-free) expression of type α. This form is used to
introduce let-polymorphism with control effects in a sound manner[2].

Figure 5 gives the type inference rules where α ≤ A in the rule (var) means, if
A≡∀t1. · · · ∀tn.ρ for some monomorphic type ρ, then τ ≡ρ[σ1, · · · , σn/t1, · · · , tn]
for some monomorphic types σ1, · · · , σn. We assume that, a basic type b is
associated with each constant d. The type Gen(ρ; Γ) in the rule (let) is defined
by ∀t1. · · · ∀tn.ρ where {t1, · · · , tn} = FTV(ρ) − FTV(Γ).

The rule (exp) allows one to switch from the second form to the first form.
Since pure expressions are insensitive to continuations and trails, we can intro-
duce arbitrary types for their answer type (β) and the trail type (τ).

2 For the standard CPS translation, we say, the answer type is modified in a compu-
tation of e from β to γ, if the CPS transform of e has type (α → β) → γ. Without
control operators for delimited continuations, the types β and γ are equal. With
them, they may be different. See Asai and Kameyama [2] for details.

248 Y. Kameyama and T. Yonezawa

Γ � e : α, β, γ/t

Γ � e : α, β, γ/∗ star-intro, if t �∈ FTV(Γ, α, β, γ)
Γ � e : α, β, γ/∗
Γ � e : α, β, γ/τ

star-elim

Γ � e : α → (β, γ, δ/∗), ε, ρ/σ

Γ � e : α → (β, γ, δ/τ), ε, ρ/σ
star-fun

Fig. 6. Type Inference Rules for λ
c/p+
let

Other rules are naturally derived from the type for the CPS translation. The
rule (var) is standard. In the rule (fun), the function type α → (β, γ, δ/τ) extends
the ordinary function type α → β to encapsulate the effect of answer type
modification from γ to δ with the trail type τ . The rule (app) reflects this
intuition. The rule (let) is for ML-like let-polymorphism. As is well known, we
must restrict e1 in the expression let x = e1 in e2 to have a sound type system,
and we follow Asai and Kameyama’s type system [2] which restricts e1 to be a
pure term, i.e., either a value or # e.

For the rule (prompt), look at its CPS translation in Figure 4. It is easy to
check θ1 must have type Cont(τ, τ/τ) for some τ , and the return type of [[e]] is the
same as that of [[# e]]. So by letting this return type β, we get the rule (prompt).
The rule (control) is more complicated. In the CPS translation of Fc.e, a term
λxk′t′.kx(t@(k′ :: t′)) is substituted for c, which poses constraints that t and t′

are of the same list type and k′ is of its member type. Since we restricted all
trails to be of type Trail(τ) for some τ , k′ has to have the type Cont(τ, τ/τ)
and t and t′ have the type Trail(τ). Then we can derive the rule (control).

An example type derivation for a concrete term will be given in a later section.
We call the calculus with this type system λ

c/p
let .

4.3 Introducing Trail-Polymorphism

The type system of λ
c/p
let can type many useful examples with control/prompt.

However, it cannot express a certain kind of polymorphism in trails. We occa-
sionally want to express that a function has type α → (β, γ, δ/τ) for any τ ,
i.e., it is insensitive (or polymorphic) to the trail type. To solve this problem
with a small cost, i.e., not without introducing impredicative polymorphism, we
introduce a limited form of polymorphism, called trail-polymorphism, into λ

c/p
let

as follows.
We add a special type constant “∗” to the definition of types, which can appear

in a function type as α → (β, γ, δ/∗), or in a judgement as Γ � e : α, β, γ/∗.
Intuitively, ∗ represents a universally quantified type variable.

We add to λ
c/p
let three new type inference rules listed in Figure 6, which reflect

the intuitive meaning of ∗. We call the extended calculus λ
c/p+
let . Note that the

reductions rules are the same as those for λ
c/p
let .

Typed Dynamic Control Operators for Delimited Continuations 249

We can also introduce impredicative polymorphism in the same manner as
that system for shift/reset[2]. Since it is orthogonal to the present type system,
we omit the details in this paper.

5 Properties

In this section, we state basic properties of λ
c/p
let and λ

c/p+
let . Due to lack of space,

we only state proof sketches in this paper.
The first property, subject reduction, is by far the most important property

in a typed calculus.

Theorem 1 (Subject Reduction). If Γ � e1 : α, β, γ/τ is derived and e1 �
e2, then Γ � e2 : α, β, γ/τ can be derived.

The theorem is proved by the standard induction on the derivation. For the case
of the reduction # (P [Fc.e]) � # (let c = λx.P [x] in e), we decompose it into
several smaller reductions as in [3], then the theorem is easy to prove.

The next theorem is the progress property which states the computation of a
well typed, closed expression does not get stuck. Here, the word “close” means
that the term does not have any free variables and any occurrences of control
which are not enclosed by prompt. To ensure the last property, we restrict our
attention to an expression in the form # e. A redex is one of the expressions in
the lefthand sides of the reduction rules in Figure 3.

Theorem 2 (Progress). If � # e : α, β, γ/τ is derivable, then # e is in the
form E[r] where E is an evaluation context and r is a redex.

Note that, if e is a value v, # e itself is a redex which reduces to v. The progress
property is proved by the standard case analysis.

These two theorems together constitute the strong type soundness property.
The next theorem states that our type system is compatible with the CPS

translation. For this purpose, we define the type structure of the target calculus
depending on the source calculus by:

– for λ
c/p
let , the target calculus is (predicatively) polymorphic lambda calculus

with conditionals, the trail type Trail(τ), and the list type.
– for λ

c/p+
let , the target calculus is impredicatively polymorphic lambda calculus

(second order lambda calculus) with conditionals, the trail type Trail(τ),
and the list type.

We define the CPS translation for types and type contexts by:

α∗ = α for basic type and type variable
(α → (β, γ, δ/τ))∗ = α∗ → (β∗ → Trail(τ∗) → γ∗) → Trail(τ∗) → δ∗

(α → (β, γ, δ/∗))∗ = α∗ → ∀X.((β∗ → Trail(X) → γ∗) → Trail(X) → δ∗)
[]∗ = []

(Γ, x : ∀t1 . . . tn.α)∗ = Γ ∗, x : ∀t1 . . . tn.α∗

250 Y. Kameyama and T. Yonezawa

The third line is for λ
c/p+
let only. We then state type preservation property as a

theorem.

Theorem 3 (Type Preservation for CPS Transformation)

– (For λ
c/p
let and λ

c/p+
let) If Γ � e : α, β, γ/τ is derivable for τ �= ∗, then Γ ∗ �

[[e]] : (α∗ → Trail(τ∗) → β∗) → Trail(τ∗) → γ∗ is derivable in the target
calculus.

– (For λ
c/p+
let) If Γ � e : α, β, γ/∗ is derivable, then Γ ∗ � [[e]] : (α∗ →

Trail(τ) → β∗) → Trail(τ) → γ∗ is derivable for any τ in the target
calculus.

In this paper, we do not state the property that equality is preserved by CPS
translation, since it is independent to our type system, and in order to state the
property as a theorem, we need to develop a sophisticated equality theory in the
target language. For the latter, we need the following property for an arbitrary
pure evaluation context P :

λx k1 t1. [[P [x]]] θ1 (k1 :: t1) = λx k1 t1. [[P [x]]] k1 t1

which is about the inductive nature of trails (lists). Since t1 in this equation is
a bound variable, we need to elaborate an inductive theory.

6 Encoding Shift/Reset by Control/Prompt

In type-free setting, shift/reset can be macro-defined by control/prompt [4],
and we show in this section that it also holds for the typed setting here. We
adopt the calculus λ

s/r
let in [2] for shift/reset, since it is the most liberal type

system which allows answer-type modification and let-polymorphism. Its type
inference rules are listed in the appendix.

We define a translation from λ
s/r
let to λ

c/p+
let as follows:

Types (α/γ → β/δ) = α → (β, γ, δ/∗)

Expressions Sc.e = Fc′.let c = λx.# (c′x) in e

〈e〉 = # e

Type Contexts Γ, x : ∀t1 . . . tn.α = Γ, x : ∀t1 . . . tn.α

For other constructs, the translation is homomorphic. This translation preserves
types and reduction.

Theorem 4

– If Γ ; β � e : α; γ is derivable in λ
s/r
let , Γ � e : α, β, γ/∗ is derivable in λ

c/p+
let .

– If Γ ; β � e1 : α; γ is derivable and e1 � e2 in λ
s/r
let , e1 �∗ e2 in λ

c/p+
let .

Typed Dynamic Control Operators for Delimited Continuations 251

Proof. We prove this theorem by induction on the derivation of Γ ; β � e : α; γ.
We list two key cases here.

(Reset) Suppose we have a derivation in λ
s/r
let :

....
Γ ; α � e : α; β

Γ ; γ � 〈e〉 : β; γ
reset

By induction hypothesis, we can derive Γ � e : α, α, β/∗. Then we can derive:

Γ � e : α, α, β/∗
Γ � e : α, α, β/α

Γ �p # e : β

Γ � 〈e〉 = # e : β, γ, γ/∗

(Shift) Suppose we have a derivation in λ
s/r
let :

....
Γ, c : ∀t.(β/t → α/t); δ � e : δ; γ

Γ ; α � Sc.e : β; γ
shift

Let Δ1 = Γ, c : ∀t.(β → (α, t, t/∗)). By induction hypothesis, we have a deriva-
tion for Δ1 � e : δ, δ, γ/∗ in λ

c/p+
let . Let Δ2 = Γ, c′ : β → (s, s, α/s) where s is a

fresh type variable, then we can derive:

Δ2, x : β � c′x : s, s, α/s

Δ2, x : β �p # (c′x) : α

Δ2, x : β � # (c′x) : α, t, t/∗
Δ2 �p λx.# (c′x) : β → (α, t, t/∗)

Δ2 �p λx.# (c′x) : β → (α, t, t/∗)

Δ1 � e : δ, δ, γ/∗
Δ1 � e : δ, δ, γ/δ

Δ2 � let c = λx.# (c′x) in e : δ, δ, γ/δ

Γ � Fc′.let c = λx.# (c′x) in e : β, α, γ/s

Since s �∈ FTV(Γ , α, β, γ), we can derive Γ � Sc.e : β, α, γ/∗.
We can also show that, if e � e′ in λ

s/r
let , then e �∗ e′ in λ

c/p+
let , whose key

case is proved as follows:

〈P [Sc.e]〉 = # (P [Fc′.let c = λx.# c′x in e])

� # (let c′ = λy.P [y] in let c = λx.# c′x in e)

� # (let c = λy.# (λy.P [x])x in e)

� # (let c = λx.# P [x] in e)

= 〈let c = λx.〈P [x]〉 in e〉

We remark that this proof does not work for λ
c/p
let .

252 Y. Kameyama and T. Yonezawa

7 Typed Control/Prompt Is Strictly More Expressive
Than Shift/Reset

In the type-free setting, we can encode control/prompt in terms of shift/reset
[7,15,6]. In the typed setting, it is not the case, as we will prove in this section.
Since λ

s/r
let is strongly normalizing [2], it is sufficient to construct a typable ex-

pression in λ
c/p+
let (or λ

c/p
let) whose computation is not terminating.

Let α and •, resp. be a type and its inhabitant, resp., for instance, α = bool
and • = true. Let Γ be the type context c : α → (α, α, α/α), and recall e1; e2

is an abbreviation of (λx.e2)e1 for x �∈ FV(e2). We can type the expression
(Fc.(c•; c•); Fc.(c•; c•)) in λ

c/p
let as follows:

Γ � c : α → (α, α, α/α), α, α/α Γ � • : α

Γ � c • : α, α, α/α

Γ � c •; c • : α, α, α/α

�p Fc.(c •; c •) : α

� Fc.(c •; c •); Fc.(c •; c •) : α, α, α/α

� # (Fc.(c •; c •); Fc.(c •; c •)) : α, β, β/τ

The computation of this term does not terminate:

(Fc.(c•; c•); Fc.(c•; c•))
� # (let c = λu.(u; Fc.(c•; c•)) in (c•; c•))
�∗ # (Fc.(c•; c•); (λu.(u; # Fc.(c•; c•)))•)
�∗ # (Fc.(c•; c•); (λu′.(u′; (λu.(u; # Fc.(c•; c•)))•))•)
�∗ . . .

Since this example does not use answer-type modification or polymorphism, it
can be typed in a more restricted type system such as our previous one [20].

We can go a step further. After submission of this paper, Kiselyov [16] and
the second author (Yonezawa) have independently constructed fixed point com-
binators in call-by-value:

(Kiselyov) Y1 = λf.# (Zf ; Zf) where Zf = Fc. f (λx. # (c•; c•) x)
(Y onezawa) Y2 = λf.# (Xf ; Xf) where Xf = Fc. λx. (f # (c•; c•)) x

Both Y1 and Y2 are typable in λ
c/p
let , and satisfy Y1 f x = f (λx. Y1 f x) x, and

Y2 f x = f (λx. f (Y2 f) x) x. Therefore, they can serve as fixed point combina-
tors. The former satisfies a simpler equation, while Y1 e may not terminate for
some term e, but Y2 e always terminates.

8 Conclusion

We have introduced a polymorphic type system for control/prompt, which al-
lows answer type modification and does not need recursive types. We have shown

Typed Dynamic Control Operators for Delimited Continuations 253

that our calculus enjoys type soundness and is compatible with the CPS transla-
tion, and that typed control/prompt is strictly more powerful than typed shift/
reset in the absence of recursive types. Although we cannot claim that our type
system is *the* only type system for control/prompt, we believe that ours can
be a good starting point to study the type structure of these control operators.

Based on this work, Kiselyov and the second author have successfully shown
that λ

c/p
let is Turing-complete if we extend the calculus with integers and prim-

itive functions. The situation is similar to the exception mechanism in ML, for
which Lillibridge [17] has proved that typed (unchecked) exception can simulate
all type-free lambda terms, and therefore can represent all Turing-computable
functions. Thielecke also compared the expressive powers of several control op-
erators using a different technique [19].

In this paper we have been concentrating on the foundational aspect of
control/prompt in this paper, and the practical aspect of our type systems
is unstudied. In particular, more application programs other than those by Bier-
nacki, Danvy, Millikin’s are called for, but it is left for future work.

Acknowledgements. We thank Kenichi Asai, Dariusz Biernacki, Olivier Danvy,
and Chung-chieh Shan for their insights. Special thanks go to Oleg Kiselyov and
anonymous reviewers for valuable comments. This work was partly supported by
JSPS Grant-in-Aid for Scientific Research (C) 16500004.

References

1. Asai, K.: On Typing Delimited Continuations: Three New Solutions to the Printf
Problem. Technical Report OCHA-IS 07-1, Department of Information Science,
Ochanomizu University (September, 2007)

2. Asai, K., Kameyama, Y.: Polymorphic Delimited Continuations. In: Shao, Z. (ed.)
APLAS 2007. LNCS, vol. 4807, pp. 239–254. Springer, Heidelberg (2007)

3. Asai, K., Kameyama, Y.: Polymorphic Delimited Continuations. Technical Report
CS-TR-07-10, Dept.of Computer Science, University of Tsukuba (September, 2007)

4. Biernacki, D., Danvy, O.: A Simple Proof of a Folklore Theorem about Delimited
Control. J. Funct. Program. 16(3), 269–280 (2006)

5. Biernacki, D., Danvy, O., Shan, C.-c.: On the Static and Dynamic Extents of
Delimited Continuations. Science of Computer Programming 60(3), 274–297 (2006)

6. Biernacki, D., Danvy, O., Millikin, K.: A Dynamic Continuation-Passing Style for
Dynamic Delimited Continuations. TOPLAS (to appear)

7. Shan, C.-c.: Shift to control. In: Proc. Workshop on Scheme and Functional Pro-
gramming, pp. 99–107 (2004)

8. Danvy, O.: Functional Unparsing. J. Funct. Program. 8(6), 621–625 (1998)
9. Danvy, O., Filinski, A.: Abstracting Control. In: Proc. 1990 ACM Conference on

Lisp and Functional Programming, pp. 151–160 (1990)
10. Danvy, O., Filinski, A.: Representing Control: A Study of the CPS Transformation.

Mathematical Structures in Computer Science 2(4), 361–391 (1992)
11. Dybvig, R.K., Peyton Jones, S., Sabry, A.: A Monadic Framework for Delimited

Continuations. J. Funct. Program (to appear)
12. Felleisen, M.: The Theory and Practice of First-Class Prompts. In: Proc. 15th

Symposium on Principles of Programming Languages, pp. 180–190 (1988)

254 Y. Kameyama and T. Yonezawa

13. Filinski, A.: Representing Monads. In: POPL, pp. 446–457 (1994)
14. Kameyama, Y., Hasegawa, M.: A sound and complete axiomatization for delimited

continuations. In: ICFP, pp. 177–188 (2003)
15. Kiselyov, O.: How to remove dynamic prompt: Static and dynamic delimited con-

tinuation operators are equally expressive. Technical Report 611, Computer Science
Department, Indiana University (March, 2005)

16. Kiselyov, O.: Fixpoint combinator from typed prompt/control (2007),
http://okmij.org/ftp/Computation/Continuations.html

17. Lillibridge, M.: Unchecked Exceptions Can Be Strictly More Powerful Than
Call/CC. Higher-Order and Symbolic Computation 12(1), 75–104 (1999)

18. Strachey, C., Wadsworth, C.P.: Continuations: A mathematical semantics for han-
dling full jumps. Technical Monograph PRG-11, Oxford Univ. Comput. Lab.,
Oxford, England, 1974. Reprinted in Higher-Order and Symbolic Computation
13(1/2), pp. 135–152 (2000)

19. Thielecke, H.: On Exceptions Versus Continuations in the Presence of State. In:
Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 397–411. Springer, Heidelberg
(2000)

20. Yonezawa, T., Kameyama, Y.: A Type System for Dynamic Delimited Continua-
tions. In: IPSJ Transactions on Programming, Information Processing Society of
Japan (to appear)

A Polymorphic Type System for shift/reset

We define the type system for λ
s/r
let in [2] except the fixed point operator. Types

and type contexts are defined by:

α, β · · · ::= b | t | (α/β → γ/δ) monomorphic types
A ::= α | ∀t.A polymorphic types
Γ ::= [] | Γ, x : A type contexts

where the function type (α/β → γ/δ) corresponds to α → (γ, β, δ/∗) in λ
c/p+
let .

Judgements in λ
s/r
let are either Γ ; α � e : β; γ or Γ �p e : β. The former corre-

sponds to Γ � e : β, α, γ/∗ in λ
c/p+
let . Finally, Figure 7 gives several important

type inference rules of λ
s/r
let .

Γ, x : σ; α � e : τ ; β

Γ �p λx.e : (σ/α → τ/β)
fun

Γ, k : ∀t.(τ/t → α/t); σ � e : σ; β

Γ ; α � Sk.e : τ ; β
shift

Γ ;σ � e : σ; τ

Γ �p 〈e〉 : τ
reset

Fig. 7. Type Inference Rules of λ
s/r
let

http://okmij.org/ftp/Computation/Continuations.html

Strictness Analysis Algorithms Based on an

Inequality System for Lazy Types

Hirofumi Yokouchi

Dept. Computer Science, Gunma University
yokouchi@cs.gunma-u.ac.jp

Abstract. This paper deals with type-based analysis of functional pro-
grams. In particular we focus on strictness analysis using nonstandard
type systems using a special kind of type called lazy type. We propose an
inequality system for lazy types, from which two algorithms for strictness
analysis are extracted. The key idea is elimination of the transitive law
from the inequality system. The algorithms have been implemented. We
report experimental results on performance of our algorithms.

1 Introduction

There are two major approaches to static analysis of functional programs —
abstract interpretation and type-based analysis. Of them this paper deals with
the type-based analysis. Type checking is an indispensable mechanism for pro-
gramming languages that support strong typing. In the type-based analysis,
such type checking or type inference is extended for checking various properties
of programs in addition to type consistency. A type expressing a property of
programs is called a nonstandard type to distinguish from ordinary types.

One of the earliest works for the type-based approach is Kuo and Mishra’s
strictness analysis [11]. Jensen [7,8] pointed out that the system proposed by Kuo
and Mishra is strictly weaker than the system based on abstract interpretation,
and he showed that, if conjunction of nonstandard types is introduced, then the
resulting system is equivalent to the system based on abstract interpretation.

In the type-based analysis, most algorithms are designed as variations of
Hindley-Milner’s unification-based type inference algorithm. For example, see
[12,3,9]. However, this paper focuses on lazy type inference proposed by Hankin
and Le Métayer [5]. They introduced a new algorithm for strictness analysis.
The main idea behind the algorithm is to check strictness on demand rather
than deriving systematically the most precise information. They defined a new
kind of type [Γ |M], called lazy type, where Γ is a nonstandard typing basis and
M is a term. The lazy type [Γ |M] means the least nonstandard type of M under
Γ . Consider how to check whether an application term LN has a nonstandard
type ψ under a basis Γ . If we use the unification-based type inference algorithm,
then we must compute the principal types for L and N . In the algorithm using
lazy type, detailed analysis for N is postponed until it is really needed. It is
checked whether L has the nonstandard type [Γ |N] → ψ. In [5], the checking
algorithm is designed as an abstract machine in the style of [6].

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 255–271, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 H. Yokouchi

In this paper we propose a formal system for lazy types. The main idea is to
formalize the lazy type system as an inequality system without the transitive
law. The lazy type [Γ |M] stands for the least nonstandard type of M under
Γ . Therefore, the judgment Γ � M : ψ stating that M has the nonstandard
type ψ under Γ is expressed as the inequality [Γ |M] ≤ ψ. We can define axioms
and rules for inequalities on nonstandard types with lazy types. For the decision
procedure for such an inequality system, it is difficult to handle the transitive
law directly. The transitive law is the inference rule expressing that φ ≤ χ and
χ ≤ ψ imply φ ≤ ψ. In the decision procedure, we must search a suitable χ for
checking φ ≤ ψ. In general, a heuristic method is needed to find such χ. We
hope that the decision procedure becomes much simpler, if the transitive law is
eliminated.

Elimination of the transitive law resembles cut-elimination of LK or LJ,
Gentzen’s sequent calculi [4]. Gentzen’s sequent-style formulations are often used
for examining properties of various type systems [1,14,18,15]. An inequality like
φ ≤ φ1 → · · · → φn → ψ is corresponding to the sequent φ, φ1, . . . , φn −→ ψ
in LJ. We hope to consult LK and LJ for designing the axioms and rules for
inequalities. Furthermore, we can extract the decision procedure on inequalities
from the system without the transitive law. This is analogous to the fact that
a decision procedure is extracted from LK without the cut rule. In particular,
Wang’s algorithm [17] is the most remarkable decision procedure extracted from
a certain variant of cut-free sequent calculus.

We introduce two algorithms named ch and ev for strictness analysis based
on the inequality system. The algorithm ch is a decision procedure that deter-
mines whether a given inequality of nonstandard types is derivable. Therefore,
we can check that a term M has a nonstandard type φ under a context Γ if
we check [Γ |M] ≤ φ by the algorithm ch. The algorithm ev computes the non-
standard type for [Γ |M] directly. More precisely, ev takes a nonstandard type
φ and a finite list of nonstandard types φ1, . . . , φn, and it yields the least non-
standard type ψ such that φ ≤ φ1 → · · · → φn → ψ. These two algorithms are
almost automatically extracted from the inequality system for lazy types, whose
properties can be analyzed formally. In this paper, we show the correctness and
termination of the algorithms rigorously.

The algorithm ch is essentially the same as the algorithms introduced in [5].
However, the presentation styles are quite different. The algorithm in [5] is de-
fined in the form of an abstract machine like SECD machine, while our algorithm
is presented as an ML-like pseudo-code that consists of transformation rules. In
contrast, the algorithm ev is completely different from ch or the algorithm in
[5]. The algorithm ev computes the nonstandard type for [Γ |M], while ch checks
an inequality like [Γ |M] ≤ ψ. We have implemented the algorithms ch and ev
in OCaml. Our experimental results show that ev is much faster than ch.

Another related work is chaotic iteration introduced in [2]. The chaotic itera-
tion is a technique for computing an approximation of the fixed point for a given
function. In the algorithm ev we can replace the part for processing recursion
by an algorithm using chaotic iteration. Our experimental results show that, for

Strictness Analysis Algorithms Based on an Inequality System 257

analysis of higher-order functions, the algorithm ev is faster than the modified
algorithm with chaotic iteration.

The nonstandard type systems with conjunction are corresponding to inter-
section type systems for standard types. Type checking or type inference for
intersection types is known undecidable. In [10], it has been shown that certain
restricted intersection type systems are decidable. In the restricted systems, an
intersection type is restricted to a certain shape called a finite-rank intersection
type. In particular, the restriction to rank-2 intersection types is often used in
designing variou type inference algorithms. A similar restriction can be imposed
on the nonstandard type systems. In [9], a type inference algorithm has been
proposed for a rank-2 nonstandard type system of strictness analysis. Our algo-
rithms ch and ev, however, adopt nonstandard types without any restriction.

The rest of the paper organized as follows. In Section 2, we will define the
nonstandard type system for strictness analysis. In Section 3 we will introduce
inequality system LS for nonstandard types. In Section 4 we will introduce
inequality system LT for lazy nonstandard types by extending LS. In Sections 5
and 6, we will define the algorithms ch and ev, respectively. In Section 7, we
will report experimental results on the comparison of the algorithms ch, ev and
the modified algorithm with chaotic iteration.

The full paper with the detailed proofs and the OCaml programs of the algo-
rithms ch and ev are presented in:

http://www.keim.cs.gunma-u.ac.jp/~yokouchi/lstrict/index.html

2 Preliminaries

In this section, following [8], we define the nonstandard type system for strictness
analysis. The set of (standard) types is defined by the following grammar:

τ (types) ::= ι | τ1 → τ2

ι (base types) ::= bool | num | · · ·

We use the letters ρ, σ, and τ for types. For each type τ , the set L(τ) of non-
standard types, shortly ns-types, is defined by the following rules:

tτ ∈ L(τ) fτ ∈ L(τ)
α ∈ L(τ) β ∈ L(τ)

α ∧ β ∈ L(τ)
α ∈ L(ρ) β ∈ L(σ)

α → β ∈ L(ρ → σ)

We use the letters α, β and γ for ns-types. Whenever no confusion occurs, the
type τ of tτ or fτ is omitted.

An ns-type α ∈ L(τ) informally means a set of values of type τ . In particular,
fτ means the singleton set of the undefined value ⊥, and tτ means the entire set
of the values of type τ . The ns-type α → β means the set of functions f such
that f(a) is contained in the set expressed by β for every element a in the set
expressed by α. Therefore, tσ1 → fσ2 → f ι represents the set of binary functions
which are strict for the second argument.

258 H. Yokouchi

We assume that for every type τ infinitely many variables are supplied and
that for each variable its type is uniquely determined. The set of pseudo-terms
is defined by the following grammar:

M ::= x | c | M1M2 | λx.M | μξx.M | if M1 then M2 else M3

The letter ξ stands for a finite sequence of ns-types. The letter c stands for a
constant. In a standard way we define the set of terms, which are well-typed. We
use the letters x, y and z for variables, and we use L, M and N for terms. The
term μξx.M is an extension of μx.M . This extension is used for designing the
algorithms ch and ev. In μξx.M , if the type of M is τ , then every φ ∈ ξ and x
must be of the type τ , and the type of μξx.M is τ . When ξ is empty, we write
μx.M for μξx.M .

A (nonstandard typing) basis is a finite sequence of the form x1 : α1, . . . , xn :
αn such that x1, . . . , xn are distinct variables and α1, . . . , αn are ns-types of the
same types as of the corresponding variables. We use the letters Γ and Δ for
bases. A (nonstandard typing) judgment is an expression of the form Γ � M : β
such that the type of M is the same as the type of β. An (ns-type) inequality
is an expression of the form α ≤ β such that α and β are ns-types of the same
type.

We define the axiomatic systems NS for inequalities on ns-types and NT for
judgments in Figs. 1 and 2. We assume that for each term constant c of type τ at
most one ns-type α of type τ is supplied. The set of the pairs c : α is represented
by A in NT. The axioms and rules of NS and NT are standard ones except for
the rule of μξx.M , which is an extension of the rule of μx.M . Remark that the
standard rule for μx.M is coincident with the special case of the rule μξx.M in
which ξ is empty. We say that α ∼= β is derivable, when α ≤ β and β ≤ α are
derivable. Similarly, we say that α ≤ β ≤ γ is derivable, when α ≤ β and β ≤ γ
are derivable.

α ≤ α
α1 ≤ α2 α2 ≤ α3

α1 ≤ α3

β1 ≤ α1 α2 ≤ β2

α1 → α2 ≤ β1 → β2

α ≤ β1 α ≤ β2

α ≤ β1 ∧ β2
α ∧ β ≤ α α ∧ β ≤ β

α ≤ t f ≤ β tρ→σ ≤ tρ → tσ tρ → fσ ≤ fρ→σ

(α → β1) ∧ (α → β2) ≤ α → (β1 ∧ β2)

Fig. 1. Axioms and rules of NS

The most important property of ns-types is finiteness. For each type τ , the
set L(τ) of ns-types of type τ is infinite. However, if all equivalent ns-types
are identified, then L(τ) is finite. It is convenient to provide a finite set whose
elements represent all ns-types for each type τ .

Strictness Analysis Algorithms Based on an Inequality System 259

Γ � x : α (x : α ∈ Γ) Γ � c : α (c : α ∈ A)

Γ � M : α → β Γ � N : α

Γ � MN : β

Γ, x : α � M : β

Γ � λx.M : α → β

Γ � L : f

Γ � if L then M else N : f

Γ � M : α Γ � N : α

Γ � if L then M else N : α
Γ, x : α1 ∧ . . . ∧ αn ∧ β � M : β

Γ � μξx.M : α1 ∧ . . . ∧ αn ∧ β
(ξ ≡ α1, . . . , αn)

Γ � M : α Γ � M : β

Γ � M : α ∧ β
Γ � M : t

Γ � M : α α ≤ β

Γ � M : β

Fig. 2. Axioms and rules of NT

For each type τ we define sets N (τ) and P(τ) of ns-types simultaneously as
follows:

– N (τ) = {fτ} if τ is a base type,
– N (τ1 → τ2) = { α → β | α ∈ P(τ1), β ∈ N (τ2) },
– P(τ) ≡ { ∧P | P ⊆ N (τ) }.

Here ∧P is defined as α1 ∧ . . .∧αn for P = {α1, . . . , αn}. When P = ∅, we define
∧P ≡ t. For example,

– N (ι → ι) = {tι → f ι, f ι → f ι},
– P(ι → ι) = {(tι → f ι) ∧ (f ι → f ι), tι → f ι, f ι → f ι, tι→ι},
– N ((ι → ι) → ι) = {tι→ι → f ι, (tι → f ι) → f ι, (f ι → f ι) → f ι,

(tι → f ι) ∧ (f ι → f ι) → f ι},

where ι is a base type.

Lemma 1. For every ns-types α of type τ there exists β ∈ P(τ) such that α ∼= β
is derivable in NS.

3 Another Set of the Rules for Inequalities

In the last section we have defined the axiomatic system NS for inequalities on
ns-types. We introduce another set of inference rules for inequalities to examine
the properties of ns-types. In Fig. 3 we define axiomatic system LS, which will
be shown equivalent to NS.

The axioms and rules in LS are defined on the analogy of the rules of LK and
LJ, Gentzen’s sequent calculi for logic. An inequality α ≤ β1 → · · · → βn → γ
is regarded as the the sequent α, β1, . . . , βn −→ γ in LJ. The rule (IntR) is
corresponding to the following rule of LJ:

α, β1, . . . , βn −→ γ1 α, β1, . . . , βn −→ γ2

α, β1, . . . , βn −→ γ1 ∧ γ2

The point is that LS has no rule for transitive law. The transitive law is admis-
sible in LS. This fact is corresponding to cut-elimination in LJ.

260 H. Yokouchi

(Init) α ≤ α (IntR)
α ≤ β1 → · · · → βn → γ1 α ≤ β1 → · · · → βn → γ2

α ≤ β1 → · · · → βn → γ1 ∧ γ2

(IntL)
α1 ≤ β

α1 ∧ α2 ≤ β

α2 ≤ β

α1 ∧ α2 ≤ β
(Arrow)

β1 ≤ α1 α2 ≤ β2

α1 → α2 ≤ β1 → β2

(t) α ≤ β1 → · · · → βn → t (f)1 f ≤ β (f)2
t ≤ α1 α2 ≤ f

α1 → α2 ≤ f

Fig. 3. Axioms and rules of LS

Lemma 2. In LS, if α ≤ β and β ≤ γ are derivable, then α ≤ γ is derivable.

Using Lemma 2 we can show that NS and LS are equivalent.

Lemma 3. An inequality α ≤ β is derivable in NS if and only if it is derivable
in LS.

The next lemma shows the basic properties of LS, which will be used for design-
ing the algorithms.

Lemma 4. In LS the following equivalences hold.

(i) The inequality α ≤ β1 → · · · → βn → γ1 ∧ γ2 is derivable if and only if
α ≤ β1 → · · · → βn → γi is derivable for i = 1 and 2.

(ii) The inequality α1 ∧α2 ≤ β is derivable if αi ≤ β is derivable for i = 1 or 2.
Furthermore, unless β is of the form β1 → · · · → βn → γ1 ∧γ2, the opposite
implication also holds.

(iii) The inequality α1 → α2 ≤ β1 → β2 is derivable if and only if either (1) β1 ≤
α1 and α2 ≤ β2 are derivable, or (2) t ≤ β2 is derivable.

(iv) The inequality α1 → α2 ≤ f is derivable if and only if t ≤ α1 and α2 ≤ f
are derivable.

4 Lazy Nonstandard Types

In this section we introduce lazy ns-types and the axiomatic system LT for them.
A lazy ns-type is an expression of the form [Γ |M], where Γ is a basis and M
is a term such that all the free variables in M occur in Γ . Furthermore, it is
allowed that another lazy ns-type occurs in Γ or ξ of μξx.L in [Γ |M]. Therefore,
ns-types, terms, and bases are defined by mutual recursion. An ns-type that may
contain [Γ |M] is simply called an ns-type, an ns-type of the form [Γ |M] is called
a lazy ns-type, and an ns-type in which no lazy ns-type occurs is called a proper
ns-type. We use the letters φ, χ and ψ for ns-types and α, β and γ for proper
ns-types.

We define an axiomatic system LT as an inequality system on ns-types. For
LT we use the same set of the axioms and rules of LS shown in Fig. 3 together
with those in Fig. 4. Note that, when axioms and rules in Fig. 3 are used in LT,
the ns-types in them may contain lazy types.

Strictness Analysis Algorithms Based on an Inequality System 261

(Var)
φ ≤ ψ

[Γ |x] ≤ ψ
(x : φ ∈ Γ) (Const)

φ ≤ ψ

[Γ |c] ≤ ψ
(c : φ ∈ A)

(Appl)
[Γ |M] ≤ [Γ |N] → ψ

[Γ |MN] ≤ ψ

(Abst)
[Γ, x : φ|M] ≤ ψ

[Γ |λx.M] ≤ φ → ψ
(Abst)f

[Γ, x : t|M] ≤ f

[Γ |λx.M] ≤ f

(if)1
[Γ |L] ≤ f

[Γ |if L then M else N] ≤ ψ
(if)2

[Γ |M] ≤ ψ [Γ |N] ≤ ψ

[Γ |if L then M else N] ≤ ψ

(μ)1
φ ≤ ψ

[Γ |μξx.M] ≤ ψ
(φ ∈ ξ) (μ)2

[Γ, x : [Γ |μξ,ψx.M] | M] ≤ ψ

[Γ |μξx.M] ≤ ψ

(LazyR)
for all α ∈ N (τ) if [Γ |M] ≤ α then φ ≤ ψ1 → · · · → ψn → α

φ ≤ ψ1 → · · · → ψn → [Γ |M]

where τ is the type of M

Fig. 4. Axioms and rules of LT

The lazy ns-type [Γ |M] means the least ns-type φ such that Γ � M : φ is
derived. The rules of LT in Fig. 4 are designed on the basis of the rules of NT.
For example, the rule for application terms in NT suggests the following rule:

[Γ |M] ≤ φ → ψ [Γ |N] ≤ φ

[Γ |MN] ≤ ψ

However, the two inequalities in the assumption can be unified into [Γ |M] ≤
[Γ |N] → ψ. The resulting rule is (Appl).

The key to the rules of LT is the design of the rules for μx.M . We explain
the role of the rules (μ)1 and (μ)2 with the following program presented in [11]:

μf.λx.λy.λz.if z = 0 then x + y else f y x (z − 1)

Here =, +, and − are constants with the ns-type (f → t → f)∧(t → f → f). For
readability, we use infix notation for these constants. This term has the ns-type
f → t → t → f . This fact is proved in LT as in Fig. 5, where we use the following
symbols:

M0 ≡ if z = 0 then x + y else f y x (z − 1)
M1 ≡ λx.λy.λz.M0

φ1 ≡ f → t → t → f
Γ1 ≡ f : [|μφ1f.M1], x : f , y : t, z : t
φ2 ≡ [Γ1|y] → [Γ1|x] → [Γ1|z − 1] → f

Γ2 ≡ f : [|μφ1,φ2f.M1], x : [Γ1|y], y : [Γ1|x], z : [Γ1|z − 1]
φ3 ≡ [Γ2|y] → [Γ2|x] → [Γ2|z − 1] → f

The point of this example is that the least ns-type of μf.M1 is coincident with
φ1 ∧ φ2. The components of this ns-type occur at μφ1,φ2f.M1 in the derivation.

262 H. Yokouchi

...

[Γ1|x + y] ≤ f P1

[Γ1|M0] ≤ f

...

[f : [|μφ1f.M1] ≤ φ1

[|μf.M1] ≤ φ1

P1

...

[Γ2|x + y] ≤ f P2

[Γ2|M0] ≤ f

...

[f : [|μφ1,φ2f.M1] | M1] ≤ φ2

[|μφ1f.M1] ≤ φ2

[Γ1|f] ≤ φ2

...

[Γ1|f y x (z − 1)] ≤ f

P2

f ≤ f

[Γ1|x] ≤ f

[Γ2|y] ≤ f

...

t → t → f ≤ [Γ2|x] → [Γ2|z − 1] → f

φ1 ≤ φ3

[|μφ1,φ2f.M1] ≤ φ3

[Γ2|f] ≤ φ3

...

[Γ2|f y x (z − 1)] ≤ f

Fig. 5. An example of a derivation in LT

In general, ξ of μξx.M is used as a candidate or an approximation of the
least ns-type of μx.M . More precisely, the conjunction of the ns-types in ξ is a
candidate of [Γ |μx.M]. If we try to design the checking algorithm for inequalities,
then the meanings of the rules (μ)1 and (μ)2 become clear. For [Γ |μx.M] ≤ ψ, we
take ψ as a candidate of [Γ |μx.M] and we continue to check [Γ, x : [Γ |μψx.M] |
M] ≤ ψ. This consideration suggests the rule (μ)2. For [Γ |μξx.M] ≤ ψ, we check
φ ≤ ψ for each φ ∈ ξ. The conjunction of the ns-types in ξ is a candidate of
[Γ |μx.M]. Therefore, if there is φ ∈ ξ such that φ ≤ ψ is valid, then we conclude
[Γ |μξx.M] ≤ ψ is valid. From this observation the rule (μ)1 follows.

In the rest of this section we show a property of LT, which will be used in
designing the algorithms ch and ev. We hope to show that the system LT is
equivalent to NT, but it is difficult to prove this fact directly. We will take
another method. Intuitively, a lazy ns-type [Γ |M] means the least ns-type β
such that Γ � M : β. For each type τ the set L(τ) of proper ns-types of type τ is
finite if all equivalent ns-types are identified. Therefore, we can define the least
proper ns-type corresponding to [Γ |M]. Formally we introduce the following
definition.

Strictness Analysis Algorithms Based on an Inequality System 263

Definition 1. For an ns-type φ and term M we define φ and M as follows:

– φ ≡ φ if φ is a proper ns-type.
– [Γ |M] ≡ ∧{ α ∈ N (τ) | Γ � M : α is derivable in NT }, where τ is the type

of M , and Γ is the context x1 : φ1, . . . , xn : φn for Γ ≡ x1 : φ1, . . . , xn : φn.
– For each term M , we define M as the term obtained from M by replacing

each ξ of μξ by ξ, where ξ is the sequence φ1, . . . , φn for ξ ≡ φ1, . . . , φn.

The next lemma shows that [Γ |M] represents the least proper ns-type β such
that Γ � M : β is derivable in NT.

Lemma 5. A judgment Γ � M : β is derivable in NT if and only if [Γ |M] ≤ β
is derivable in NS.

We will show that some rules of LT can be applied in the opposite direction.
For instance, the following rule corresponding to (Appl) is also admissible:

[Γ |MN] ≤ ψ

[Γ |M] ≤ [Γ |N] → ψ

The next lemma, however, does not directly treat the rules in LT, but it shows
the equivalence of inequalities obtained by applying the operator [Γ |M].

For the lemma, we prepare a technical term. An ns-type of the form φ1 →
· · · → φn → t or φ1 → · · · → φn → f is said to be non-conjunctive.

Lemma 6. In NS the following equivalences hold.

(i) [Γ |x] ≤ ψ is derivable if and only if φ ≤ ψ is derivable, where x : φ ∈ Γ .
(ii) [Γ |c] ≤ ψ is derivable if and only if φ ≤ ψ is derivable, where c : φ ∈ A.
(iii) [Γ |MN] ≤ ψ is derivable if and only if [Γ |M] ≤ [Γ |N] → ψ is derivable.
(iv) [Γ |λx.M] ≤ φ → ψ is derivable if and only if [Γ, x : φ|M] ≤ ψ is derivable.
(v) [Γ |λx.M] ≤ f is derivable if and only if [Γ, x : t|M] ≤ f is derivable.
(vi) [Γ | if L then M1 else M2]≤ψ is derivable if and only if either (1) [Γ |L] ≤

f is derivable, or (2) [Γ |Mi] ≤ ψ is derivable for i = 1 and 2.
(vii) [Γ |μξx.M] ≤ ψ is derivable if either (1) φ ≤ ψ is derivable for some

φ ∈ ξ, or (2) [Γ, x : [Γ |μξ,ψx.M] | M] ≤ ψ is derivable. Furthermore, if ψ
is non-conjunctive, then the opposite implication also holds.

(viii) The following two are equivalent:
(1) φ ≤ ψ1 → · · · → ψn → [Γ |M] is derivable, and
(2) for all α∈N (τ), if [Γ |N] ≤ α is derivable, then φ ≤ ψ1 → · · · → ψn → α

is derivable.

5 The Algorithm ch

The axioms and rules of LT together with Lemmas 4 and 6 suggest the type
checking algorithm ch in Fig. 6. The algorithm ch is presented in an ML-like
pseudo-code. Taking an inequality φ ≤ ψ, it returns true if φ ≤ ψ is derivable,

264 H. Yokouchi

fun ch(φ ≤ φ) = true
| ch(φ ≤ ψ1 → · · · → ψn → t) = true
| ch(t ≤ ψ1 → · · · → ψn → f) = false
| ch(f ≤ ψ) = true
| ch(φ1 → φ2 ≤ f) = ch(t ≤ φ1) and ch(φ2 ≤ f)
| ch([Γ |x] ≤ ψ) = ch(φ ≤ ψ) (x : φ ∈ Γ)
| ch([Γ |c] ≤ ψ) = ch(φ ≤ ψ) (c : φ ∈ A)
| ch([Γ |MN] ≤ ψ) = ch([Γ |M] ≤ [Γ |N] → ψ)
| ch([Γ |λx.M] ≤ φ → ψ) = ch([Γ, x : φ|M] ≤ ψ)
| ch([Γ |λx.M] ≤ f) = ch([Γ, x : t|M] ≤ f)
| ch([Γ |if L then M else N] ≤ ψ)

= ch([Γ |L] ≤ f) or (ch([Γ |M] ≤ ψ) and ch([Γ |N] ≤ ψ))
| ch(φ ≤ φ1 → · · · → φn → (ψ1 ∧ ψ2))

= ch(φ ≤ φ1 → · · · → φn → ψ1) and ch(φ ≤ φ1 → · · · → φn → ψ2)
| ch(φ ≤ ψ1 → · · · → ψn → [Γ |M])

= ∀α ∈ N (τ).(not ch([Γ |M] ≤ α) or ch(φ ≤ ψ1 → · · · → ψn → α)
(where τ is the type of M)

| ch(φ1 → φ2 ≤ ψ1 → ψ2) = ch(ψ1 ≤ φ1) and ch(φ2 ≤ ψ2)
| ch(φ1 ∧ φ2 ≤ ψ) = ch(φ1 ≤ ψ) or ch(φ2 ≤ ψ)
| ch([Γ |μξx.M] ≤ ψ) = (∃φ ∈ ξ.ch(φ ≤ ψ)) or ch([Γ, x : [Γ |μξ,ψx.M] | M] ≤ ψ)

Fig. 6. Algorithm ch

and it returns false if φ ≤ ψ is underivable. The algorithm ch performs to sim-
plify the given inequality according to the rules of LT. The rules for simplification
are obtained from Lemmas 4 and 6.

The order of the transformation rules in ch is essential. The pattern matching
proceeds sequentially from the top of the rules. Therefore, we should remark that,
in the rules for ch(φ1 ∧ φ2 ≤ ψ) and ch([Γ |μξx.M]) ≤ ψ) of Fig. 6, ψ is non-
conjunctive. Similarly, in the rule for ch(φ1 → φ2 ≤ ψ1 → ψ2), the ns-type ψ2

is of the form χ1 → · · · → χn → f .

Lemma 7. If the execution of ch(φ ≤ ψ) terminates with true (false), then
φ ≤ ψ is derivable (not derivable) in NS.

Lemma 8. Let Γ � M : β be a judgment in which no lazy ns-type occurs. Then,
the execution of ch([Γ |M] ≤ β) terminates.

Theorem 1. A judgment Γ � M : β is derivable (not derivable) in NT if and
only if the execution ch([Γ |M] ≤ β) terminates with true (false).

Using Theorem 1, we can show the equivalence of the systems NT and LT.

Theorem 2. A judgment Γ � M : β is derivable in NT if and only if [Γ |M] ≤ β
is derivable in LT.

6 The Algorithm ev

The algorithm ch is a checking algorithm determining whether φ ≤ ψ is derivable
or underivable. In this section, we define another form of algorithm. A lazy

Strictness Analysis Algorithms Based on an Inequality System 265

fun ev(t; p) = t
| ev(f ; p) = f
| ev(φ → ψ; χ, p) = if ch(ev(χ) ≤ ev(φ)) then ev(ψ; p) else t
| ev(φ → ψ) = ev(φ) → ev(ψ)
| ev(φ ∧ ψ; p) = min(ev(φ; p), ev(ψ; p))
| ev([Γ |x]; p) = ev(φ; p) (where x : φ ∈ Γ)
| ev([Γ |c]; p) = ev(φ; p) (where c : φ ∈ A)
| ev([Γ |MN]; p) = ev([Γ |M]; [Γ |N], p)
| ev([Γ |λx.M]; φ, p) = ev([Γ, x : φ|M]; p)
| ev([Γ |λx.M]) = ∧{α → ev([Γ, x : α|M]) | α ∈ P(τ)} (where τ is the type of x)
| ev([Γ |if L then M else N]; p)

= if ev([Γ |L]) = f then f else max(ev([Γ |M]; p),ev([Γ |N]; p))
| ev([Γ |μξx.M]; p)

= let val α = foldr (fn φ β ⇒ min(ev(φ; p), β) t ξ
fun loop γ = if ch(α ≤ γ) then α

else let val γ′ = ev([Γ, x : [Γ |μξ,p→γx.M] | M]; p)
in if ch(γ′ ≤ γ) then min(α, γ′) else loop γ′

in loop f

Fig. 7. Evaluation algorithm ev

fun min(α, β) = if ch(α ≤ β) then α else if ch(β ≤ α) then β else α ∧ β
fun max(α1 → α2, β1 → β2) = min(α1, β1) → max(α2, β2)

| max(α, β) when ch(α ≤ β) = β
| max(α, β) when ch(β ≤ α) = α
| max(α1 ∧ α2, β) = max(α1, β) ∧ max(α2, β)
| max(α, β1 ∧ β2) = max(α, β1) ∧ max(α, β2)

Fig. 8. Auxiliary functions used in ev

ns-type [Γ |M] means the proper least ns-type γ such that Γ � M : γ is derivable.
This proper ns-type is represented as [Γ |M]. In Fig 7, we define algorithm ev
that computes the proper ns-type [Γ |M] directly. In fact, the algorithm ev is
defined in a more general form. It takes a pair of an ns-type φ and a sequence
of ns-types φ1, . . . , φn, and it yields the least proper ns-type γ such that φ ≤
φ1 → . . . → φn → γ is derivable. In Fig. 7, p stands for a sequence of ns-types,
and p → γ represents the ns-type φ1 → · · · → φn → γ for p ≡ φ1, . . . , φn. If p is
empty, then p → γ is γ.

In the definition of ev we use the algorithm ch defined in the last section. Note
that ch is used only to check inequalities on proper ns-types. We also use two
auxiliary functions min and max defined in Fig. 8. The functions min and max
take two proper ns-types and compute the greatest lower bound and the least
upper bound, respectively. The greatest lower bound of α and β is equivalent
to α ∧ β. In the definition of min, however, a simpler form is returned in case
α ≤ β or β ≤ α.

Lemma 9. Suppose ev(φ; φ1, . . . , φn) terminates with α. Then, φ ≤ φ1 →
· · · → φn → β is derivable if and only if α ≤ β is derivable.

266 H. Yokouchi

Theorem 3. Let Γ � M : α1 → · · · → αn → β be a judgment in which no lazy
ns-type occurs. Then, ev([Γ |M]; α1, . . . , αn) terminates. Moreover, Γ � M :
α1 → · · · → αn → β is derivable in NT if and only if ev([Γ |M]; α1, . . . , αn)
≤ β.

7 Extension and Experimental Results

The algorithms ch and ev deal with the most basic strictness analysis, but
they are easily extended. For example, we can extend them to treat the 4-point
domains introduced in [16]. This extension is also presented in [5]. We have
implemented the extended algorithms in OCaml. We report experimental results
concerning the comparison with these two algorithms and the algorithm with
chaotic iteration mentioned in Section 1.

We first present the extension by the 4-point domains. The 4-point domains
are introduced to express abstract properties concerning finite and infinite lists.
We introduce a new type constructor list. Namely, if τ is a type, then τ list is
also a type. We add new kinds of ns-types ∞ and α∈ defined by the following
rules:

∞τ ∈ L(τ list)
α ∈ L(τ)

α∈ ∈ L(τ list)

For the newly added ns-types we add the following axioms and rules to NS:

∞ ≤ α∈ t ≤ t∈
α ≤ β

α∈ ≤ β∈
α∈ ∧ β∈ ≤ (α ∧ β)∈

Informally ∞τ stands for the set of the following lists whose elements are of type
τ : finite lists ended with undefined value, and infinite lists. The ns-type α∈ of
type τ list stands for the set of the following lists: the lists in ∞τ , and finite lists,
at least one element of which is contained in α. For example, L(num list list)
consists of the following six ns-types (and their equivalent ns-types): f ≤ ∞ ≤
f∈ ≤ ∞∈ ≤ (f∈)∈ ≤ t.

For terms we newly add cons(M, N) and case(L, M, N). The term cons(M, N)
stands for the list obtained by adding M to the head of the list N . The term
case(L, M, N) stands for the following term:

if N = nil then L else M (head N) (tail N)

See [16] for the role of case. The rules for cons and case are defined in Fig. 9.
The algorithms ch and ev are extended by adding the rules defined in Figs. 10
and 11, respectively.

Our algorithms are closely related to chaotic iteration introduced in [2]. It is
a method of calculating an approximation of a fixed point of a function defined
on a finite domain. A term can be interpreted in the partially ordered sets of ns-
types [7,8]. A term μf.λx.M of type σ → τ can be interpreted as the fixed point
F of the function corresponding to λx.M . Consider the term (μf.λx.M)N . If we
want to have the value of this term, we do not necessarily need to compute the

Strictness Analysis Algorithms Based on an Inequality System 267

Γ � N : ∞
Γ � cons(M, N) : ∞

Γ � M : β

Γ � cons(M, N) : β∈
Γ � N : β∈

Γ � cons(M, N) : β∈

Γ � N : f

Γ � case(L, M, N) : f

Γ � M : t → ∞ → β Γ � N : ∞
Γ � case(L, M, N) : β

Γ � M : (t → α∈ → β) ∧ (α → t → β) Γ � N : α∈
Γ � case(L, M, N) : β

Γ � L : β Γ � M : t → t → β

Γ � case(L, M, N) : β

Fig. 9. Rules for cons and case in NT

| ch([Γ |cons(M, N)] ≤ ∞) = ch([Γ |N] ≤ ∞)
| ch([Γ |cons(M, N)] ≤ φ∈) = ch([Γ |M] ≤ φ) or ch([Γ |N] ≤ φ∈)
| ch([Γ |cons(M, N)] ≤ f) = false
| ch([Γ |case(L, M, N)] ≤ ψ) = ch([Γ |N] ≤ f)

or (ch([Γ |M] ≤ t → ∞ → ψ) and ch([Γ |N] ≤ ∞))
or (∃α ∈ N (τ).ch([Γ |M] ≤ t → α∈ → ψ)

and ch([Γ |M] ≤ α → t → ψ) and ch([Γ |N] ≤ α∈))
or (ch([Γ |L] ≤ ψ) and ch([Γ |M] ≤ t → t → ψ))

(the type of N is τ list)

Fig. 10. Extension of ch

| ev([Γ |cons(M, N)]) = case ev([Γ |N]) of
| f → ∞
| ∞ → ∞
| α∈ → let val β = min(α, ev([Γ |M])) in β∈
| t → let val β = ev([Γ |M]) in if ch(t ≤ β) then t else β∈

| ev([Γ |case(L, M, N); p) = case ev([Γ |N]) of
| f → f
| ∞ → ev([Γ |M]; t, ∞, p)
| α∈ → max(ev([Γ |M]; t, α∈, p),ev([Γ |M]; α, t, p))
| t → max(ev([Γ |L]; p), ev([Γ |M]; t, t, p))

Fig. 11. Extension of ev

value F (b) for all arguments b of type σ. In the chaotic iteration, we compute
a partial function P approximating F such that P is defined on a set V and
P (b) = F (b) for b ∈ V . Moreover, the value of N is contained in V , and the
value P (c) for c
∈ V is not used in computing the value P (d) for d ∈ V .

We can insert a chaotic iteration algorithm into ev by replacing the processing
of μx.M by the algorithm based on chaotic iteration. The resulting algorithm
is named ci and shown in Fig. 12. The chaotic iteration algorithm is taken
from [13].

268 H. Yokouchi

fun ci(t; p) = t
| · · ·
| ci([Γ |μx.M]; p) =

let val P = (ref ∅) val V = (ref ∅) val S = (ref ∅) val T = (ref ∅) in
begin

P := ∅;
repeat

S := {p}; V := ∅;
for q ∈ S do

let val α = ci([Γ, x : ((!P), T) | M]; q) in
begin

V := (!V) ∪ {q};
S := {r ∈ (!S) ∪ (!T) | cieq(r ∼= s) = false for every s ∈ (!V)};
if (!P) contains r → β such that cieq(q ∼= r) = true then

remove r → β from (!P);
P := (!P) ∪ {q → α};

end
until (!P) and (!V) are stable;
Take r → β in (!P) such that cieq(p ∼= r) = true and return β;

end
| ci((ξ, T); p)

= (T := (!T) ∪ {p};
if ξ contains r → β such that cieq(r ∼= p) = true then β else f)

and cieq(p ∼= q)
= (m = n) and

∀i (1 ≤ i ≤ n). let val α = ci(φi) val β = ci(ψi)
in ch(α ≤ β) and ch(β ≤ α)

(where p ≡ φ1, . . . , φm and q ≡ ψ1, . . . , ψn)

Fig. 12. Algorithm ci with chaotic iteration

We have implemented the algorithms ch, ev and ci in OCaml. We report
experimental results on the comparison of these three algorithms. For a test-
bet we use the terms defined in Fig. 13. They are list manipulation functions
defined in continuation passing style. The terms test1 , . . . , test4 are the same as
used in [5]. In Fig 13, Cfoldr, Cappend and Ccat occurs several times. They can
have different types. Rigorously, these functions with different types should be
defined separately in our formulation, but we use the present definition for the
sake of brevity. In Table 1, we present the execution time of ch, ev and ci. The
execution time of ch for each term, say test1 , is the total sum of the execution
time of ch(test1 ≤ α) for all α ∈ N (τ), where τ ≡ (num list list) → num is the
type of test1 .

In the implementation, we can adopt a number of optimizations. Of them,
‘memoization’ is the most effective method in our algorithms. In the memoiza-
tion, when the computation ev([Γ |N]; p) is completed, the result is registered
with the argument p. The registered data is used when ev([Γ |N]; p) is called for
the same p. The effectiveness of the memoization is shown in Table 1.

Strictness Analysis Algorithms Based on an Inequality System 269

Cfoldr ≡ μf .λg.λl.λb.λc.case(c b, (λx.λx′.f g x′ b (λy.g x y c)), l)

Cappend ≡ μa.λl.λl′.λc.case(c l′, (λx.λx′.a x′ l′ (λy.c (cons (x, y)))), l)

Ccat ≡ λl.λc.(Cfoldr Cappend l nil c)

K ≡ λx.λy.x

isnil ≡ λl.case(true, λx.λx′.false, l)

length ≡ μf .λl.case(0, λx.λx′.1 + (f x′), l)

sum ≡ μs.λl.case(0, λx.λx′.x + (s x′), l)

test1 ≡ λl.Ccat l (K 0) test1 ′ ≡ λl.Ccat l test1

test2 ≡ λl.Ccat l isnil test2 ′ ≡ λl.Ccat l test2

test3 ≡ λl.Ccat l length test3 ′ ≡ λl.Ccat l test3

test4 ≡ λl.Ccat l sum test4 ′ ≡ λl.Ccat l test4

Fig. 13. Sample programs

Table 1. Execution time of the algorithms

ch ev ci Result
A B A B A B

test1 0.001 0.001 0.000 0.000 0.001 0.020 ∞∈ → f
test2 0.003 0.019 0.001 0.001 0.002 0.165 ∞∈ → f
test3 0.002 0.010 0.000 0.001 0.001 0.085 ∞∈ → f
test4 0.003 0.006 0.000 0.002 0.002 0.084 (f∈)∈ → f
test1 ′ 2.536 > 60 0.002 0.205 0.011 > 60 (∞∈)∈ → f
test2 ′ 10.475 > 60 0.004 1.028 0.019 > 60 (∞∈)∈ → f
test3 ′ 3.961 > 60 0.003 0.622 0.010 > 60 (∞∈)∈ → f
test4 ′ 9.746 > 60 0.004 2.131 0.010 > 60 ((f∈)∈)∈ → f

A: with memoization, B : without memoization, Unit: second
CPU: Pentium 4 (3.20 GHz)

Our experimental result shows that ev is much faster than ch. The reason
is twofold. The one is the difference of the ways to process case. The algorithm
ch contains ∃α ∈ N (τ). · · ·, whose execution time depends on the size of N (τ).
On the other hand, the algorithm ev performs in a more direct way. The second
reason is in the methods of processing μ-terms. In ch, the computation of the
rule for ch(· · · ≤ · · · → [Δ|N]) is essentially inefficient since the execution time
depends on the size of N (τ), where τ is the type of N . This rule is indispensable
for processing μ-terms. Consider the computation of ch([Γ |μφ→αx.M] ≤ ψ →
β), where φ ≡ [Δ|N]. In the computation, we must compute ch(ψ ≤ φ) and
thus ch(φ ≤ α) for all α ∈ N (τ). In ev, for computing ev([Γ |μφ→αx.M]; ψ),
the algorithm evaluates ch(ev(ψ) ≤ ev(φ)). For the computation of ev(φ), we
need to compute ev([Δ, y : β|L]) for all β ∈ P(ρ), if N is λy.L of type ρ → σ ≡ τ .
The execution time depends on the size of P(ρ). However, the size of P(ρ) is
smaller than that of N (τ) = {γ1 → γ2 | γ1 ∈ P(ρ), γ2 ∈ N (σ)}, if the size of
N (σ) is greater than 1.

270 H. Yokouchi

The algorithm ev is also faster than ci. This difference of the performance may
be related to computation of ev(φ) and ci(φ) for a lazy ns-type φ of a function
type τ ≡ ρ → σ such that φ ≡ [Δ|λy.L], and the size of P(ρ) is relatively large.
In ev, this computation occurs in processing μ-terms as shown above. In ci,
the computation of ci(φ) occurs in three places. For ci([Γ |μx.M]; p), some ξ is
created and ci([Γ, x : (ξ, T)|M]; p) is executed. If ξ ≡ φ → α and p ≡ ψ, then
ci(φ) is executed in the computation of cieq(φ ∼= ψ). In addition, the execution
of ci(φ) occurs in updating the variables S and P for processing μ-terms. The
parts for updating S and P do not occur in ev. This is one of the reason why
ev is faster than ci. In case higher-order function is not used, ev and ci may
have similar performance.

8 Conclusion

We have proposed strictness analysis algorithms ch and ev based on the formal
system LT for inequalities on ns-types with lazy ns-types. These two algorithms
are almost automatically extracted from the system. The key point is that the
system is defined without transitive law. The algorithms are defined with pat-
tern matching. This is convenient to implementation in a functional program-
ming language. We have implemented the algorithms in OCaml. We reported
experimental results on comparison of the algorithms ch and ev together with
ci obtained from ev by replacing the algorithm for μ-term by chaotic iteration.
Our experimental results show that ev is faster than the others.

In our algorithms, conjunction of ns-types is essential. Our method is flexible
enough to be applied to various type systems with conjunction in addition to
the nonstandard type system for strictness analysis. In particular, it is easy to
define an inequality system for intersection type assignment system, and we can
extract a (partial) decision procedure for the system. The detailed investigation
for application of our method to other type systems is left to the future work.

References

1. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Intersection and union
types: Syntax and semantics. Inform. Comp. 119(2), 202–230 (1995)

2. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the Second International Symposium on Programming, pp. 106–130
(1976)

3. Damiani, F.: Non-standard type inference for functional programs. PhD thesis,
Università di Torino (1998)

4. Gentzen, G.: Untersuchungen über das logische Schließen, I, II. Math. Zeitschr. 39,
176–210, 405–431 (1934)

5. Hankin, C., Métayer, D.L.: Lazy type inference and program analysis. Science of
Computer Programming 25(2–3), 219–249 (1995)

6. Hannan, J., Miller, D.: From operational semantics for abstract machines. Mathe-
matical Structures in Computer Science 2(4), 415–459 (1992)

Strictness Analysis Algorithms Based on an Inequality System 271

7. Jensen, T.P.: Strictness analysis in logical form. In: Hughes, J. (ed.) FPCA 1991.
LNCS, vol. 523, pp. 352–366. Springer, Heidelberg (1991)

8. Jensen, T.P.: Abstract Interpretation in Logical Form. PhD thesis, the Imerial
College (1992)

9. Jensen, T.P.: Inference of polymorphic and conditional strictness properties. In:
POPL 1998: 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 209–221 (1998)

10. Kfoury, A.J., Wells, J.B.: Principality and decidable type inference for finite-rank
intersection types. In: POPL 1999: 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 161–174 (1999)

11. Kuo, T.M., Mishra, P.: Strictness analysis: a new perspective based on type in-
ference. In: FPCA 1989: the Fourth International Conference on Functional Pro-
gramming Languages and Computer Architecture, pp. 260–272 (1989)

12. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

13. Rosendahl, M.: Higher-order chaotic iteration sequences. In: Penjam, J.,
Bruynooghe, M. (eds.) PLILP 1993. LNCS, vol. 714, pp. 332–345. Springer, Hei-
delberg (1993)

14. Seldin, J.P.: A gentzen-style sequent calculus of constructions with expansion rules.
Theor. Comput. Sci. 243(1-2), 199–215 (2000)

15. Tiuryn, J.: A sequent calculus for subtyping polymorphism. Inform. Comp. 164(2),
345–369 (2001)

16. Wadler, P.: Strictness analysis on non-flat domains (by abstract interpretation). In:
Abramsky, S., Hankin, C. (eds.) Abstract Interpretation of Declarative Languages,
pp. 266–275. Ellis-Horwood (1987)

17. Wang, H.: Proving theorems by pattern recognition I. Commun. ACM 3(4), 220–
234 (1960)

18. Yokouchi, H.: Completeness of type assignment systems with intersection, union,
and type quantifiers. Theor. Comput. Sci. 272(1-2), 341–398 (2002)

Quantitative Logic Programming Revisited�

Mario Rodŕıguez-Artalejo and Carlos A. Romero-Dı́az

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain
mario@sip.ucm.es, cromdia@fdi.ucm.es

Abstract. Uncertainty in Logic Programming has been investigated
since about 25 years, publishing papers dealing with various approaches
to semantics and different applications. This paper is intended as a first
step towards the investigation of uncertainty in Constraint Functional
Logic Programming. We revise an early proposal, namely van Emden’s
Quantitative Logic Programming [22], and we improve it in two ways.
Firstly, we generalize van Emden’s QLP to a generic scheme QLP (D)
parameterized by any given Qualification Domain D, which must be a
lattice satisfying certain natural axioms. We present several interesting
instances for D, one of which corresponds to van Emden’s QLP . Sec-
ondly, we generalize van Emden’s results by providing stronger ones,
concerning both semantics and goal solving. We present Qualified SLD
Resolution over D, a sound and strongly complete goal solving procedure
for QLP (D), which is applicable to open goals and can be efficiently im-
plemented using CLP technology over any constraint domain CD able to
deal with qualification constraints over D. We have developed a proto-
type implementation for van Emden’s QLP as an instance of QLP (D),
on top of the CFLP system T OY .

Keywords: Quantitative Logic Programming, Qualification Domains,
Qualification Constraints.

1 Introduction

The investigation of uncertainty in logic programming has proceeded along var-
ious lines during the last 25 years. A recent recollection by V. S. Subrahmanian
[21] highlights some phases in the evolution of the topic from the viewpoint of a
committed researcher.

Research on the field has dealt with various approaches to semantics, as well
as different applications. One of the earliest approaches was Quantitative Logic
Programming, QLP for short. This can be traced back to a paper by Shapiro
[17], who proposed to use real numbers in the interval (0, 1] as certainty factors,
as well as certainty functions for propagating certainty factors from the bodies
to the heads of program clauses. Subsequently, van Emden [22] considered QLP
with an attenuation factor f ∈ (0, 1] attached to the implication of each program
� Research partially supported by projects MERIT-FORMS (TIN2005-09027-C03-03)

and PROMESAS-CAM(S-0505/TIC/0407).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 272–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantitative Logic Programming Revisited 273

clause and restricted his attention to the certainty function which propagates to
a clause head the certainty factor f×b, where f is the clause’s attenuation factor
and b is the minimum of the certainty factors known for the body atoms. Van
Emden’s approach was less general than Shapiro’s because of the fixed choice
of a particular certainty function, but it allowed to prove more general results
on model theoretic and fixpoint semantics, similar to those previously obtained
in [23,1] for classical Logic Programming. Moreover, [22] gave a procedure for
computing the certainty of atoms in the least Herbrand model of a given pro-
gram, by applying an alpha-beta heuristic to the atoms’ and/or search trees.
This procedure worked only for ground atoms having a finite search tree.

Following these beginnings, logic programming with uncertainty developed in
various directions. Subrahmanian [19] proposed an alternative to [22], using a
different lattice of numeric values (better suited to express the certainty degree
of truth an falsity) as well as clauses whose atoms were annotated with values
from this lattice. Neither certainty functions nor attenuation factors were used
in this approach, which was extended in [20] to provide goal solving procedures
enjoying stronger soundness and completeness results. As a brief summary of
some significant later contributions let us mention: generalized annotated logic
programs [10], a quite general framework which will be discussed in more detail
in Section 6; semantics based on bilattices of generalized truth values with both
a ‘knowledge’ order and a ‘truth’ order [8]; logic programming with probabilis-
tic semantics and applications to deductive databases [13,14]; quantitative and
probabilistic constraint logic programming and applications to natural language
processing [15]; hybrid probabilistic programs [5]; probabilistic agent programs [7]
and their extension to deal with both time and uncertainty [6]; logic programs
with similarity based unification and applications to flexible data retrieval [2,11];
and functional logic programming with similarity based unification [12].

We are interested in working out an expressive framework for Constraint Func-
tional Logic Programming (briefly CFLP) with uncertainty, since functions and
constraints seem to have received up to now comparatively few attention in
this field. As a first step, we present in this paper a generalization of the early
QLP proposal by van Emden [22], which is still appealing because of its neat
semantics. Syntactically, our proposal is very close to van Emden’s QLP : we
use qualified definite Horn clauses A ← d − B with an attenuation value d at-
tached to the implication and no annotations attached to the atoms. However,
we improve [22] in the two ways summarized in the abstract: firstly, we replace
numeric certainty values (in particular, those playing the role of attenuation fac-
tors in program clauses) by qualification values belonging to a parametrically
given Qualification Domain D with a lattice structure, which provides abstract
operations generalizing the use of min (minimum) and × (product) in [22]. In
this way we get a generic scheme QLP (D). Secondly, we present stronger se-
mantic results and a sound and strongly complete goal solving procedure called
Qualified SLD Resolution overD(in symbols, SLD(D)), which extends SLD res-
olution using annotated atoms and qualification constraints over D. The QLP (D)
scheme enjoys nice semantic properties and has interesting instances that can

274 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

be efficiently implemented using CLP technology: QLP (D) programs and goals
can be easily translated into CLP (CD) for any choice of a constraint domain CD
able to compute with qualification constraints over D.

After this introduction, the rest of the paper is structured as follows:
Section 2 presents the axioms for qualification domains D, showing some basic
instances and proving that the class of such domains is closed under cartesian
product. Section 3 presents the syntax and declarative semantics of the QLP (D)
scheme. Section 4 presents qualified SLD resolution over D with its soundness
and strong completeness properties. Section 5 presents a general implementation
technique for QLP (D) and a prototype developed on top of the CFLP system
T OY [3] for the particular instance corresponding to van Emden’s QLP . Finally,
Section 6 presents our conclusions and plans for future work. Some proofs that
have been omitted due to lack of space can be found in [16].

2 Qualification Domains

By definition, a Qualification Domain is any structure D = 〈D,�,⊥,�, ◦〉 such
that:

1. 〈D,�,⊥,�〉 is a lattice with extreme points ⊥ and � w.r.t. the partial
ordering �. For given elements d, e ∈ D, we write d
 e for the greatest
lower bound (glb) of d and e and d � e for the least upper bound (lub) of d
and e. We also write d � e as abbreviation for d � e ∧ d
= e.

2. ◦ : D ×D → D, called attenuation operation, verifies the following axioms:
(a) ◦ is associative, commutative and monotonic w.r.t. �.
(b) ∀d ∈ D : d ◦ � = d.
(c) ∀d ∈ D : d ◦ ⊥ = ⊥.
(d) ∀d, e ∈ D \ {⊥,�} : d ◦ e � e.
(e) ∀d, e1, e2 ∈ D : d ◦ (e1
 e2) = d ◦ e1
 d ◦ e2.

In the rest of the paper, D will generally denote an arbitrary qualification
domain. For any finite S = {e1, e2, . . . , en} ⊆ D, the glb of S (noted as

�

S)
exists and can be computed as e1
 e2
 · · ·
 en (which reduces to � in the case
n = 0). As an easy consequence of the axioms, one gets the identity d ◦�

S =
�{d ◦ e | e ∈ S}. We generalize van Emden’s QLP to a generic scheme QLP (D)
which uses qualification values d ∈ D\{⊥} in place of certainty values d ∈ (0, 1],
the glb operator

�

in place of the minimum operator min, and the attenuation
operator ◦ in place of the multiplication operator ×. Three interesting instances
of qualification domains are shown below.

The Domain of Classical Boolean Values: B = ({0, 1},≤, 0, 1,∧), where 0
and 1 stand for the two classical truth values false and true, ≤ is the usual nu-
merical ordering over {0, 1}, and ∧ stands for the classical conjunction operation
over {0, 1}. The instance QLP (B) of our QLP (D) scheme behaves as classical
Logic Programming.

The Domain of van Emden’s Uncertainty Values: U = (U,≤, 0, 1,×),
where U = [0, 1] = {d ∈ IR | 0 ≤ d ≤ 1}, ≤ is the usual numerical ordering, and

Quantitative Logic Programming Revisited 275

× is the multiplication operation. In this domain, the top element � is 1 and
the greatest lower bound

�

S of a finite S ⊆ U is the minimum value min(S),
which is 1 if S = ∅. For this reason, the instance QLP (U) of our QLP (D) scheme
behaves as van Emden’s QLP .

The Domain of Weight Values: W = (P,≥,∞, 0, +), where P = [0,∞] =
{d ∈ IR ∪ {∞} | d ≥ 0}, ≥ is the reverse of the usual numerical ordering (with
∞ ≥ d for any d ∈ P), and + is the addition operation (with∞+d = d+∞ =∞
for any d ∈ P). In this domain, the top element � is 0 and the greatest lower
bound

�

S of a finite S ⊆ P is the maximum value max(S), which is 0 if S = ∅.
When working in the instance QLP (W) of our QLP (D) scheme one propagates
to a clause head the qualification value f +b, where f is the clause’s ’attenuation
factor’ and b is the maximum of the qualification values known for the body
atoms. Therefore, qualification values in the instance QLP (W) of our QLP (D)
scheme behave as a weighted measure of the depth of proof trees.

It is easily checked that the axioms of qualification domains are satisfied by
B, U and W . In fact, the axioms have been chosen as a natural generalization of
some basic properties satisfied by the ordering ≤ and the operation × in U . In
general, the values belonging to a qualification domain are intended to qualify
logical assertions in some sense, either as a degree of certainty as in the case of
U , or as a measure of complexity as in the case of W , or whatever.

Given two qualification domains Di = 〈Di,�i,⊥i,�i, ◦i〉 (i ∈ {1, 2}), their
cartesian product D1 × D2 is defined as D =def 〈D,�,⊥,�, ◦〉, where D =def

D1 ×D2, the partial ordering � is defined as (d1, d2) � (e1, e2) ⇐⇒def d1 �1 e1

and d2 �2 e2, ⊥ =def (⊥1,⊥2), � =def (�1,�2), and the attenuation operator ◦
is defined as (d1, d2)◦(e1, e2) =def (d1◦1e1, d2◦2e2). The class of the qualification
domains is closed under cartesian products, as stated in the following result.

Proposition 1. The cartesian product D = D1 × D2 of two given qualification
domains is always another qualification domain.

Proof. According to the axiomatic definition of qualification domains, one must
prove two items:

1. D is a lattice with extreme points ⊥ and � w.r.t. the partial ordering �.
This is easily checked using the definition of � in the product domain. In
particular, one gets the equalities (d1, d2)
 (e1, e2) = (d1
1 e1, d2
2 e2) and
(d1, d2) � (e1, e2) = (d1 �1 e1, d2 �2 e2).

2. ◦ satisfies the five axioms required for attenuation operators, i.e.:
(a) ◦ is associative, commutative and monotonic w.r.t. �.
(b) ∀(d1, d2) ∈ D1 ×D2 : (d1, d2) ◦ � = (d1, d2).
(c) ∀(d1, d2) ∈ D1 ×D2 : (d1, d2) ◦ ⊥ = ⊥.
(d) ∀(d1, d2), (e1, e2) ∈ D1 ×D2 \ {⊥,�} : (d1, d2) ◦ (e1, e2) � (e1, e2).
(e) ∀(d1, d2), (e1, e2), (e′1, e

′
2) ∈ D1 × D2 : (d1, d2) ◦ ((e1, e2)
 (e′1, e

′
2)) =

((d1, d2) ◦ (e1, e2))
 ((d1, d2) ◦ (e′1, e′2)).
All these conditions are easily proved, using the hypothesis that both D1 and
D2 are qualification domains as well as the construction of D as cartesian
product of D1 and D2.
�

276 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

Intuitively, each value (d1, d2) belonging to a product domain D1 ×D2 imposes
the qualification d1 and also the qualification d2. In particular, values (c, d)
belonging to the product domain U × W impose two qualifications, namely: a
certainty value greater or equal than c and a proof tree with depth less or equal
than d. This intuition indeed corresponds to the declarative and operational
semantics formally defined in Sections 3 and 4.

3 Syntax and Semantics of QLP(D)

3.1 Programs, Interpretations and Models

We assume a signature Σ providing free function symbols (a.k.a. constructors)
and predicate symbols. Terms are built from constructors and variables from a
countably infinite set Var, disjoint from Σ. Atoms are of the form p(t1, . . . , tn)
(abbreviated as p(tn)) where p is a n-ary predicate symbol and ti are terms. We
write AtΣ for the set of all the atoms, called the open Herbrand base. A QLP (D)
program P is a set of qualified definite Horn clauses of the form A← d−B where
A is an atom, B a finite conjunction of atoms and d ∈ D\{⊥} is the attenuation
value attached to the clause’s implication. In QLP (B) programs, the only choice
for d is 1, standing for true, and therefore QLP (B) behaves as classical LP . The
following example presents two simple programs over the domains U and W . It
is not meant as a realistic application, but just as an illustration.

Example 1

1. The QLP (U) program PU displayed below can be understood as a knowledge
base given by the facts for the predicates animal, plant, human and eats,
along with knowledge inference rules corresponding to the clauses with non-
empty body. The clauses for the predicate human specify the human beings as
the ancestors of adam and eve, with the certainty of being an actual human
decreasing as one moves back along the ancestors’ chain. Therefore, the cer-
tainty of being a cruel human also decreases when moving from descendants
to ancestors.

cruel(X) <-0.90- human(X), eats(X,Y), animal(Y)
cruel(X) <-0.40- human(X), eats(X,Y), plant(Y)

animal(bird) <-1.0- human(adam) <-1.0-
animal(cat) <-1.0- human(eve) <-1.0-
plant(oak) <-1.0- human(father(X)) <-0.90- human(X)
plant(apple) <-1.0- human(mother(X)) <-0.90- human(X)

eats(adam, X) <-0.80-
eats(eve,X) <-0.30- animal(X)
eats(eve,X) <-0.60- plant(X)
eats(father(X),Y) <-0.80- eats(X,Y)
eats(mother(X),Y) <-0.70- eats(X,Y)

Quantitative Logic Programming Revisited 277

2. The QLP (W) program PW is very similar to PU , except that the attenuation
value 1 is attached to all the clauses. Therefore, each clause is intended to
convey the information that the depth of a proof tree for the head is 1 plus
the maximum depth of proof trees for the atoms in the body. As we will see,
qualification constraints overW can be used to impose upper bounds to the
depths of proof trees when solving goals w.r.t. PW .

Note that the two programs in this example are different qualified versions of the
classical LP program P obtained by dropping all the annotations. Due to the
left recursion in the clauses for the predicates human and eats, some goals for
P have an infinite search space where SLD resolution with a leftmost selection
strategy would fail to compute some expected answers. For instance, the answer
{X �→ mother(eve), Y �→ apple} would not be computed for the goal eats(X,Y).
However, when solving goals for the qualified programs PU and PW using the
resolution method presented in Section 4, qualification constraints can be used
for imposing bounds to the search space, so that even the leftmost selection
strategy leads to successful computations.
�

As shown in the example, clauses contain classic atoms in both their head and
their body. But for our semantics, we will be interested in not only proving that
we can infer an atom for a given program, but proving that we can infer it for
at least a given qualification value. For this reason, we introduce D-annotated
atoms A� d, consisting of an atom A with an attached ‘annotation’ d ∈ D \ {⊥}.
For use in goals to be solved, we consider also open annotated atoms of the form
A�W , where W is a qualification variable intended to take values over D \ {⊥}.
We postulate a countably infinite setWar of qualification variables, disjoint from
Var and Σ.

The annotated Herbrand base over D is defined as the set AtΣ(D) of all
D-annotated atoms. The D-entailment relation over AtΣ(D) is defined as fol-
lows: A� d �D A′ � d′ iff there is some substitution θ such that A′ = Aθ and
d′ � d. Finally, we define an open Herbrand interpretation over D as any subset
I ⊆ AtΣ(D) which is closed under D-entailment. That is, an open Herbrand
interpretation I including a given annotated atom A� d is required to include all
the ‘instances’ A′ � d′ such that A� d �D A′ � d′, because we intend to formalize
a semantics such that all such instances are true whenever A� d is true.

In the sequel we refer to open Herbrand interpretations just as Herbrand
interpretations, and we write IntΣ(D) for the family of all Herbrand interpreta-
tions over D. The following proposition is easy to prove from the definition of
a Herbrand interpretation and the definitions of the union and intersection of a
family of sets.

Proposition 2. The family IntΣ(D) of all Herbrand interpretations over D is
a complete lattice under the inclusion ordering ⊆, whose extreme points are
IntΣ(D) as maximum and ∅ as minimum. Moreover, given any family of inter-
pretations I ⊆ IntΣ(D), its lub and glb are

⊔
I =

⋃{I ∈ IntΣ(D) | I ∈ I} and
�

I =
⋂{I ∈ IntΣ(D) | I ∈ I}, respectively.
�

278 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

Let C be any clause A ← d − B1, . . . , Bk in the program P , and I ∈ IntΣ(D)
any interpretation over D. We say that I is a model of C if and only if for
any substitution θ and any qualification values d1, . . . , dk ∈ D \ {⊥} such that
Biθ � di ∈ I for all 1 ≤ i ≤ k, one has Aθ � (d ◦�{d1, . . . , dk}) ∈ I. And we say
that I is a model of the QLP (D) program P (I |= P) if and only if I is a model
of each clause in P .

3.2 Declarative Semantics

As in any logic language, we need some technique to infer formulas (in our case,
D-annotated atoms) from a given QLP (D) program P . Following traditional
ideas, we consider two alternative ways of formalizing an inference step which
goes from the body of a clause to its head: an operator TP and a qualified variant
of Horn Logic, noted as QHL(D) and called Qualified Horn Logic. The operator
TP : IntΣ(D)→ IntΣ(D) is defined as:

TP(I) =def {A′ � d′ | (A← d−B1, . . . , Bk) ∈ P ,
θ subst., Biθ � di ∈ I for all 1 ≤ i ≤ k, A′ = Aθ,
d′ ∈ D \ {⊥}, d′ � d ◦�{d1, . . . , dk}}

Intuitively, we can see that for a given interpretation I, TP(I) is the set of
those D-annotated atoms obtained by considering D-annotated bodies of clause
instances that are included in I and propagating an annotation to the head via
the clause’s qualification value.

The logic QHL(D) is defined as a deductive system consisting just of one
inference rule QMP(D), called Qualitative Modus Ponens over D. If there are
some (A ← d − B1, . . . , Bk) ∈ P , some substitution θ such that A′ = Aθ and
B′

i = Biθ for all 1 ≤ i ≤ k and d′ � d ◦ �{d1, . . . , dk}, the following inference
step is allowed:

B′
1 � d1 · · · B′

k � dk

A′ � d′
QMP(D)

We will use the notations P �QHL(D) A� d (resp. P �n
QHL(D) A� d) to indicate

that A� d can be inferred from the clauses in program P in finitely many steps
(resp. n steps). Note that QHL(D) proofs can be naturally represented as up-
wards growing proof trees with D-annotated atoms at their nodes, each node
corresponding to one inference step having the children nodes as premises.

The following proposition collects the main results concerning the declarative
semantics of the QLP (D) scheme. We just sketch some key proof ideas. As in
[22], full proofs can be developed in analogy to the classical papers [23,1], except
that our Herbrand interpretations are open, as first suggested by Clark in [4].
Our use of the QHL(D) calculus has no direct counterpart in the historical
papers, but is obviously related to the classical TP operator.

Proposition 3. The following assertions hold for any QLP (D) program P:

1. I |= P ⇐⇒ TP(I) ⊆ I .
2. TP is monotonic and continuous.

Quantitative Logic Programming Revisited 279

3. The least fixpoint μ(TP) is the least Herbrand model of P, noted as MP .
4. MP =

⋃
n∈IN TP ↑n (∅) = {A� d | P �QHL(D) A� d}.

Proof (Sketch). Item (1) is easy to prove from the definition of TP . In item (2),
monotonicity (I ⊆ J =⇒ TP(I) ⊆ TP(J)) follows easily from the definition
of TP and continuity (TP(

⋃
n∈IN In) =

⋃
n∈IN TP(In) for any chain {In | n ∈

IN} ⊆ IntΣ(D) with In ⊆ In+1 for all n ∈ IN) follows from monotonicity and
properties of chains and sets of interpretations. Item (3) follows from (1), (2),
Proposition 2 and some known properties about lattices. Finally, item (4) follows
from proving the two implications P �n

QHL(D) A� d =⇒ ∃m (A� d ∈ TP ↑m (∅))
and A� d ∈ TP ↑n (∅) =⇒ ∃m (P �m

QHL(D) A� d) by induction on n.
�
The next example presents proofs deriving annotated atoms which belong to the
least models of the programs PU and PW from Example 1.

Example 2

1. The proof tree displayed below shows that the U-annotated atom at its root
can be deduced from PU in QHL(U). Therefore, the atom belongs toMPU .

human(eve)#1.0

human(mother(eve))#0.90

animal(bird)#1.0

eats(eve,bird)#0.30

eats(mother(eve),bird)#0.21 animal(bird)#1.0

cruel(mother(eve))#0.15

It is easy to see which clause was used in each inference step. Note that the
atom at the root could have been proved even with the greater certainty
value 0.189. However, since 0.15 ≤ 0.189, the displayed inference it is also
correct (albeit less informative).

2. A proof tree quite similar to the previous one, but with different annotations,
can be easily built to show that cruel(mother(eve))#4 can be deduced
from PW in QHL(W). Therefore, this annotated atom belongs to MPW .
It conveys the information that cruel(mother(eve)) has a proof tree of
depth 4 w.r.t. to the classical LP program P obtained by dropping PW ’s
annotations.
�

4 Goal Solving by SLD(D) Resolution

4.1 Goals and Solutions

In classical logic programming a goal is presented as a conjunction of atoms. In
our setting, proving atoms with arbitrary qualifications may be unsatisfactory,
since qualification values too close to ⊥ may not ensure sufficient information.
For this reason, we present goals as conjunctions of open D-annotated atoms and
we indicate the minimum qualification value required each of them. Hence initial
goals look like: A1 �W1, . . . , An �Wn � W1 � β1, . . . , Wn � βn, where Wi ∈ War
and βi ∈ D \ {⊥}. Observe that we have annotated all atoms in the goal with
qualification variables Wi instead of plain values because we are interested in

280 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

any solution that satisfies the qualification constraints Wi � βi, used to impose
lower bounds to the atoms’ qualifications.

As explained in the next Subsection, goal resolution proceeds from an initial
goal through intermediate goals until reaching a final solved goal. The intermedi-
ate goals have a more general form, consisting of a composition of three items: a
conjunction of D-annotated atoms A waiting to be solved, a substitution σ com-
puted in previous steps, and a set of qualification constraints Δ. We consider
two kinds of qualification constraints:

1. α ◦W � β, where W ∈ War is qualification variable and α, β ∈ D \ {⊥} are
such that α � β. This is called a threshold constraint for W .

2. W = d ◦ �{W1, . . . , Wk}, where W, W1, . . . , Wk ∈ War are qualification
variables and d ∈ D \ {⊥}. This is called a defining constraint for W .

In order to understand why these two kinds of constraints are needed, think
of an annotated atom A�W within an initial goal which includes also an initial
threshold constraint � ◦ W � β (i.e. W � β) for W . Applying a resolution
step with a program clause whose head unifies with A and whose attenuation
value is d ∈ D \ {⊥} will lead to a new goal including a defining constraint
W = d ◦ �{W1, . . . , Wk} for W and a threshold constraint d ◦ � ◦Wi � β for
each 1 ≤ i ≤ k, where the new qualification variables Wi correspond to the atoms
in the clause’s body. This explains the need to introduce defining constraints as
well as more general threshold constraints α ◦ W � β. Intuitively, the values
α and β within such constraints play the role of an upper and a lower bound,
respectively. As we will see, our goal solving procedure takes advantage of these
bounds for pruning useless parts of the computation search space.

Let us now present some notations needed for a formal definition of goals.
Given a conjunction of D-annotated atoms A and a set of qualification con-
straints Δ, we define the following sets of variables:

– var(A) =def

⋃{var(A) | A�W ∈ A} .
– war(A) =def

⋃{W | A�W ∈ A} .
– war(Δ) as the set of qualification variables that appears in any qualification

constraint in Δ.
– dom(Δ) as the set of qualification variables that appear in the left hand side

of any qualification constraint in Δ.

We also say that Δ is satisfiable iff there is some ω ∈ SubstΣ(D) –the set of all
the substitutions of values in D\{⊥} for variables inWar– such that ω ∈ Sol(Δ),
what means that ω satisfies every qualification constraint in Δ, i.e. ω is a solution
of Δ. Moreover, we say that Δ is admissible iff it satisfies the following three
conditions:

1. Δ is satisfiable,
2. for every W ∈ war(Δ) there exists one and only one constraint for W in Δ

(this implies dom(Δ) = war(Δ)), and
3. the relation >Δ defined by W >Δ Wi iff there is some defining constraint

W = α ◦�{W1, . . . , Wi, . . . , Wk} in Δ, satisfies that >∗
Δ is irreflexive.

Quantitative Logic Programming Revisited 281

Finally, we say that Δ is solved iff Δ is admissible and only contains defining
constraints. Now we are in a position to define goals and their solutions:

Definition 1 (Goals and its Variables). Given a conjunction of D-annotated
atoms A, a substitution σ ∈ SubstΣ –the set of all substitutions of terms for
variables in Var– and a set of qualification constraints Δ, we say that G ≡
A � σ � Δ is a goal iff

i. σ ∈ SubstΣ is idempotent and such that dom(σ) ∩ var(A) = ∅.
ii. Δ is admisible.
iii. For every qualification variable in war(A) there is one and only one threshold

constraint for W in Δ. And there are no more threshold constraints in Δ.

Furthermore, if σ = ε (the identity substitution) then G is called initial, and if A
is empty and Δ is solved, then G is called solved. For any goal G, we define the
set of variables of G as var(G) =def var(A)∪dom(σ) and the set of qualification
variables of G as war(G) =def war(A) ∪ dom(Δ).
�
Definition 2 (Goal Solutions). A pair of substitutions (θ, ρ) such that θ ∈
SubstΣ and ρ ∈ SubstΣ(D) is called a solution of a goal G ≡ A � σ � Δ iff:

1. θ = σθ .
2. ρ ∈ Sol(Δ) .
3. P �QHL(D) Aθ �Wρ for all A�W ∈ A .

In addition, a solution (σ, μ) for a goal G is said to be more general than
another solution (θ, ρ) for the same goal G (one also says in this case that (θ, ρ)
is subsumed by (σ, μ)) iff σ � θ [var(G)] and μ � ρ [war(G)], where σ � θ
[var(G)] means that there is some substitution η such that the composition ση
behaves the same as θ over any variable in the set var(G) and μ � ρ [war(G)]
means that μ(W) � ρ(W) holds for any W ∈ war(G).
�
Any solved goal G′ ≡ σ � Δ has the associated solution (σ, μ), where μ = ωΔ is
the qualification substitution given by Δ, such that ωΔ(W) is the qualification
value determined by the defining constraints in Δ for all W ∈ dom(Δ), and
ωΔ(W) = ⊥ for any W ∈ War \ dom(Δ). The solutions associated to solved
goals are called computed answers.

Example 3

1. A possible goal for program PU in Example 1 is eats(father(X),Y)#W1,
human(father(X))#W2 | W1>=0.4, W2>=0.6; and a valid solution for it is
{X �→ adam, Y �→ apple} | {W1 �→ 0.50, W2 �→ 0.75}.

2. A goal for program PW in Example 1 may be eats(X,Y)#W | W<=5.0; and
a valid solution is {X �→ father(adam), Y �→ apple} | {W �→ 4.0}.
�

Note that the goal for PU in the previous example imposes lower bounds to the
certainties to be computed, while the goal for PW imposes an upper bound to the

282 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

proof depth. In general, goal solving in QLP (W) corresponds to depth-bound
goal-golving in classical Logic Programming.

4.2 SLD(D) Resolution

We propose a sound and strongly complete goal solving procedure called
Qualified SLD Resolution parameterized over a given qualification domain D,
written as SLD(D), which makes use of annotated atoms and qualification con-
straints over D. The implementation of this goal solving procedure using CLP
technology will be discussed in the next section. Resolution computations are
written G0 �C1,σ1 G1 �C2,σ2 · · · �Cn,σn Gn, abbreviated as G0 �∗

σ Gn with
σ = σ1σ2 · · ·σn. They are finite sequences of resolution steps Gi−1 �Ci,σi Gi,
starting with an initial goal G0 and ending up with a solved goal Gn. One single
resolution step is formally defined as follows:

Definition 3 (Resolution step). A resolution step has the form L, A �W,
R � σ � α ◦W � β, Δ �C1,σ1 (L, B1 �W1, . . . Bk �Wk, R)σ1 � σσ1 � Δ1 where
A�W is called the selected atom, Δ1 = d ◦α ◦W1 � β, . . . , d ◦α ◦Wk � β, W =
d◦�{W1, . . . , Wk}, Δ, C1 ≡ (H ← d−B1, . . . , Bk) ∈var P is chosen as a variant
of a clause in P with fresh variables and such that d ◦ α � β, σ1 is the m.g.u.
between A and H, and W1, . . . , Wk ∈ War are fresh qualification variables.
�
The notation α◦W � β, Δ represents a set of qualification constraints including
the threshold constraint α ◦W � β plus those in Δ, with no particular ordering
assumed. Notice that the condition d ◦ α � β is required for the resolution step
to be enabled. In this way, threshold constraints α ◦W � β are actively used for
pruning parts of the computation search space where no solutions can be found.
In the instance of QLP (B) it is easily checked that all the qualification values
and constraints become trivial, so that SLD(B) boils down to classical SLD
resolution. In the rest of this section we present the main properties of SLD(D)
resolution in the general case.

Proposition 4. If G is a goal and G0 �C1,σ1 G1, then G1 is also a goal.

Proof (Sketch). Assume a goal G0 and a SLD(D) resolution step G0 �C1,σ1 G1,
as in Definition 3. Then G0 satisfies the conditions required for goals in Definition
1, and we must show that G1 also satisfies such conditions. This is not difficult
to check, using the fact that C1 has been chosen without variables in common
with G0. In particular, note that the threshold constraint for W in G0 is absent
in G1, which includes a defining constraint for W and threshold constraints for
the new qualification variables Wi.
�
The next two theorems are the main theoretical results in the paper. The Sound-
ness Theorem 1 guarantees that every computed answer is correct in the sense
that it is a solution of a given goal. The Strong Completeness Theorem 2 ensures
that, for any solution of a given goal and any fixed selection strategy, SLD(D)
resolution is able to compute an equal, if not better, solution. The proofs, given
in [16], use inductive techniques similar to those presented in [18] for classical
SLD resolution. Example 4 below illustrates the Completeness Theorem.

Quantitative Logic Programming Revisited 283

Theorem 1 (Soundness). Assume G0 �∗ G and G = σ � Δ solved. Let (σ, μ)
be the solution associated to G. Then (σ, μ) –called the computed answer– is a
solution of G0.
�

Theorem 2 (Strong Completeness). Assume a given solution (θ, ρ) for G0

and any fixed strategy for choosing the selected atom at each resolution step.
Then there is some computed answer (σ, μ) for G0 which subsumes (θ, ρ).
�

Example 4

1. The following SLD(U) computation solves the goal for program PU pre-
sented in Example 3:

eats(father(X),Y)#W1,
human(father(X))#W2 |
W1 >= 0.4, W2 >= 0.6 �eats.4,{X �→adam}

eats(adam,Y)#W3,
human(father(adam))#W2 | {X �→ adam} |
W1 = 0.8 * min{W3},
W2 >= 0.6, 0.8 * W3 >= 0.4 �eats.1,ε

human(father(adam))#W2 | {X �→ adam} |
W1 = 0.8 * min{W3},
W2 >= 0.6, W3 = 0.8 �human.3,ε

human(adam)#W4 | {X �→ adam} |
W1 = 0.8 * min{W3},
W2 = 0.9 * min{W4},
W3 = 0.8, 0.90 * W4 >= 0.6 �human.1,ε

| {X �→ adam} |
W1 = 0.8 * min{W3},
W2 = 0.9 * min{W4},
W3 = 0.8, W4 = 1.0

Note that the computed answer {X �→ adam} | {W1 �→ 0.64, W2 �→ 0.90}
subsumes the solution for the same goal given in Example 3.

2. Similarly, SLD(W) resolution can solve the goal eats(X,Y)#W | W <= 5.0
for PW , obtaining a computed answer {X �→ father(adam)} | {W �→ 3.0}
which subsumes the solution for the same goal given in Example 3.
�

5 Towards an Implementation

In this section we assume a qualification domain D and a constraint domain
CD such that the qualification constraints used in SLD(D) resolution can be
expressed as CD constraints, and we describe a translation of QLP (D) programs
P and goals G into CLP (CD) programs Pt and goals Gt, such that solving G
with SLD(D) resolution using P corresponds to solving Gt with constrained
SLD resolution using Pt and a solver for CD.

284 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

The translation can be used to develop an implementation of SLD(D) res-
olution for the QLP (D) language on top of any CLP or CFLP system that
supports CD constraints. In particular, if D is any of the two qualification do-
mains U or W , the constraint domain CD can be chosen as R, which supports
arithmetic constraints over the real numbers [9]. We have developed a prototype
implementation for QLP (U) on top of the CFLP system T OY [3], that supports
R constraints. Note that although the use of a CLP (R) system could lead to a
more efficient implementation, we have chosen a CFLP (R) system instead of a
CLP (R) one due to our interest in a future extension of the QLP (D) scheme
to support qualified functional-logic programming. Some minor modifications of
the current prototype would easily lead to an implementation of other interesting
instances, such as QLP (W) and QLP (U ×W).

Our translation of a QLP (D) program works by adding three extra arguments
to all predicates and translating each clause independently. Given the QLP (D)
clause

C ≡ a(t)← d− b1(s1), . . . , bk(sk)

its head is translated as a(t, Alpha, W, Beta), where the new variables Alpha, W
and Beta correspond, respectively, to α, W and β in the threshold constraint
α ◦W � β related to a D-annotated atom A�W which could be selected for a
SLD(D) resolution step using the clause C. The clause’s body is translated with
the aim of emulating such a resolution step, and the translated clause becomes:

Ct ≡ a(t, Alpha, W, Beta)← d ◦Alpha � Beta,
W1 � ⊥, W1 � �, b1(s1, d ◦Alpha, W1, Beta),
...
Wk � ⊥, Wk � �, bk(sk, d ◦Alpha, Wk, Beta),
W = d ◦�{W1, . . . , Wk}

The conditions in the body of Ct do indeed correspond to the performance of a
SLD(D) resolution step with clause C. In fact, d ◦Alpha � Beta checks that C
is eligible for such a step; the conditions in the next k lines using new variables
Wi correspond to placing the annotated atoms from C’s body into the new goal;
and the last condition introduces the proper defining constraint for W .

The idea for translating goals is similar. Given an initial goal QLP (D) goal
G like

a1(t1) �W1, . . . , am(tm) �Wm � W1 � β1, . . . , Wm � βm

where β1, . . . , βm ∈ D \ {⊥}, the translated goal Gt is

a1(t1,�, W1, β1), . . . , am(tm,�, Wm, βm)

where the three additional arguments at each atom are used to encode the initial
threshold constraints Wi � βi.

Example 5. As an example of the translation process we present the transla-
tion of the program PU from Example 1 into a T OY program which uses R
constraints.

Quantitative Logic Programming Revisited 285

min1 [] = 1
min1 [X|Xs] = min2 X (min1 Xs)
min2 W1 W2 = if W1 <= W2 then W1 else W2
data being = adam | eve | bird | cat | oak | apple

| father being | mother being

cruel(X,F,W,M) :- F*0.9>=M, W1>0, W1<=1.0, human(X,F*0.9,W1,M),
W2>0, W2<=1.0, eats(X,Y,F*0.9,W2,M),
W3>0, W3<=1.0, animal(Y,F*0.9,W3,M),
W == 0.9 * min1 [W1,W2,W3]

cruel(X,F,W,M) :- F*0.4>=M, W1>0, W1<=1.0, human(X,F*0.4,W1,M),
W2>0, W2<=1.0, eats(X,Y,F*0.4,W2,M),
W3>0, W3<=1.0, plant(Y,F*0.4,W3,M),
W == 0.4 * min1 [W1,W2,W3]

animal(bird,F,W,M) :- F*1.0>=M, W == 1.0 * min1 []
animal(cat,F,W,M) :- F*1.0>=M, W == 1.0 * min1 []
plant(oak,F,W,M) :- F*1.0>=M, W == 1.0 * min1 []
plant(apple,F,W,M) :- F*1.0>=M, W == 1.0 * min1 []
human(adam,F,W,M) :- F*1.0>=M, W == 1.0 * min1 []
human(eve,F,W,M) :- F*1.0>=M, W == 1.0 * min1 []
human(father(X),F,W,M) :- F*0.9>=M, W1>0, W1<=1.0,

human(X,F*0.9, W1, M), W == 0.9 * min1 [W1]
human(mother(X),F,W,M) :- F*0.8>=M, W1>0, W1<=1.0,

human(X,F*0.8, W1, M), W == 0.8 * min1 [W1]

eats(adam,X,F,W,M) :- F*0.8>=M, W == 0.8 * min1 []
eats(eve,X,F,W,M) :- F*0.3>=M, W1>0, W1<=1.0,

animal(X,F*0.3,W1,M), W == 0.3 * min1 [W1]
eats(eve,X,F,W,M) :- F*0.6>=M, W1>0, W1<=1.0,

plant(X,F*0.6,W1,M), W == 0.6 * min1 [W1]
eats(father(X),Y,F,W,M) :- F*0.8>=M, W1>0, W1<=1.0,

eats(X,Y,F*0.8,W1,M), W == 0.8 * min1 [W1]
eats(mother(X),Y,F,W,M) :- F*0.7>=M, W1>0, W1<=1.0,

eats(X,Y,F*0.7,W1,M), W == 0.7 * min1 [W1]

To understand this example it is important to notice the following:

1. Since glbs in U are computed as minimums, translated programs must include
functions for this task. Here, min1 resp. min2 compute the minimum of a list
of numbers resp. two numbers.

2. As T OY need types for every constructor, we must include suitable datatype
declarations in translated programs.

3. The resulting code could be simplified and optimized, but our aim here is
to illustrate the literal application of the general translation rules. For this
reason, no optimizations have been performed.
�

286 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

6 Conclusions and Future Work

We have generalized the early QLP proposal by van Emden [22] to a generic
scheme QLP (D) parameterized by a qualification domain D, which must be a
lattice with extreme points and equipped with an attenuation operator. The val-
ues belonging to a qualification domain are intended to qualify logical assertions,
ensuring that they satisfy certain user’s expectations. Qualification domains in-
clude B (classical truth values of two-valued logic), U (van Emden’s certainty
values) and W (numeric values representing proof weights), as well as arbitrary
cartesian products of given qualification domains. As shown by instances such
as QLP (W) and QLP (U ×W), the QLP (D) scheme can express uncertainty in
Logic Programming and more, since the user’s expectations qualified by W do
not correspond to uncertain truth values.

The semantic results obtained for QLP (D) are stronger than those in [22].
Each program P has a least open Herbrand model MP with two equivalent
characterizations: as the least fixpoint of the operator TP , and as the set of
qualified atoms deducible from P in the logic calculus QHL(D). Moreover, the
goal solving calculus SLD(D), based on an extension of SLD resolution with
qualification constraints, is sound and strongly complete for arbitrary open goals.
SLD(B) boils down to classical SLD resolution.

As implementation technique, we have proposed a translation of QLP (D)
programs and goals into CLP (CD), choosing a constraint domain CD able to
compute with qualification constraints over D. If D is U , B, or U × B, the con-
straint domain CD can be chosen as R, and QLP (D) can be implemented on
top of any CLP or CFLP system which supports constraint solving over R. We
have implemented a prototype of QLP (U) on top of the CFLP system T OY.

In comparison to the theory of generalized annotated logic programs (GAP
for short) presented in [10], our results in this paper also include some interest-
ing contributions. With respect to the syntax and goal solving procedure, the
QLP (D) scheme can be made to fit into the GAP framework by viewing our
attenuation operators as annotation functions. However, our resolution proce-
dure SLD(D) can be implemented more efficiently than the constrained SLD
resolution used in GAP , due to optimized treatments of qualification constraints
and, more importantly, because the costly computation of so-called reductants
between variants of program clauses is needed in GAP resolution but not in
SLD(D). The purpose of reductants in GAP is to explicitly compute the lubs of
several lattice values (qualification values in the case of QLP (D)) which would
result from finitely many different computations if no reductants were used. In
GAP ’s declarative semantics, interpretations are required to be closed w.r.t.
finite lubs of lattice values assigned to the same atom, and for this reason reduc-
tants are needed for the completeness of goal resolution. In QLP (D) interpre-
tations as defined in Section 3 no closure condition w.r.t. lubs is required, and
therefore the completeness result stated in Theorem 2 can be proved without
reductants. Of course, the QLP (D) approach to semantics means that a user
has to observe several computed answers for one and the same goal and think
of the lub of the various D elements provided by the different computations by

Quantitative Logic Programming Revisited 287

himself instead of getting the lub computed by one single SLD(D) derivation.
In our opinion, this is a reasonable scenario because even in GAP there is no
guarantee that the T value provided by one single computed answer is the best
possible one. Moreover, our Theorem 2 is much stronger than the one given
in [10], which only ensures the possibility of computing some solution for any
goal whose solvability holds in the least program model. We conjecture that a
stronger completeness theorem could be proved also for GAP by using a proof
technique more similar to our’s.

As possible lines of future work we consider: to improve and extend the proto-
type implementation, covering QLP (U), QLP (W) and QLP (U ×W); to extend
the QLP (D) scheme and its implementation to a more expressive scheme which
can support qualitative programming with features such as disjunctive goals,
negation, lazy functions and parametrically given constraint domains; to explore
alternative semantic approaches, considering annotations, bilattices, probabilis-
tic semantics and similarity based unification; and to investigate applications to
the computation of qualified answers for web search queries.

Acknowledgements

The authors are thankful to their colleagues Paco López and Rafa Caballero
for their valuable hints concerning bibliography and implementation techniques.
They also appreciate the constructive comments of the anonymous reviewers,
that were helpful for improving the presentation.

References

1. Apt, K.R., van Emden, M.H.: Contributions to the theory of logic programming.
Journal of the Association for Computing Machinery (JACM) 29(3), 841–862
(1982)

2. Arcelli, F., Formato, F.: Likelog: a logic programming language for flexible data
retrieval. In: Proceedings of the ACM Symposium on Applied computing (SAC
1999), pp. 260–267. ACM Press, New York (1999)

3. Arenas, P., Fernández, A.J., Gil, A., López-Fraguas, F.J., Rodŕıguez-Artalejo, M.,
Sáenz-Pérez, F.: T OY, a multiparadigm declarative language. version 2.3.1, R.
Caballero and J. Sánchez (Eds.) (2007), http://toy.sourceforge.net

4. Clark, K.L.: Predicate logic as a computational formalism (res. report doc 79/59).
Technical report, Imperial College, Dept. of Computing, London (1979)

5. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. Journal of Logic
Programming 43(3), 187–250 (2000)

6. Dix, J., Kraus, S., Subrahmanian, V.S.: Heterogeneous temporal probabilistic
agents. ACM Transactions on Computational Logic 7(1), 151–198 (2006)

7. Dix, J., Nanni, M., Subrahmanian, V.S.: Probabilistic agent programs. ACM Trans-
actions on Computational Logic 1(2), 208–246 (2000)

8. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic
Programming 11, 91–116 (1991)

http://toy.sourceforge.net

288 M. Rodŕıguez-Artalejo and C.A. Romero-Dı́az

9. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and
system. ACM Transactions on Programming Languages and Systems 14(3), 339–
395 (1992)

10. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programs
and their applications. Journal of Logic Programming 12(3&4), 335–367 (1992)

11. Loia, V., Senatore, S., Sessa, M.I.: Similarity-based SLD resolution and its role for
web knowledge discovery. Fuzzy Sets and Systems 144(1), 151–171 (2004)

12. Moreno, G., Pascual, V.: Programming with fuzzy logic and mathematical func-
tions. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS
(LNAI), vol. 3849, pp. 89–98. Springer, Heidelberg (2006)

13. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and
Computation 101(2), 150–201 (1992)

14. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective
and conditional probability in deductive databases. Journal of Automated Reason-
ing 10(2), 191–235 (1993)

15. Riezler, S.: Probabilistic Constraint Logic Programming. PhD thesis, Neuphilolo-
gische Fakultät der Universität Tübingen (1998)

16. Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: A generic scheme for qualitative logic
programming (Technical Report DSIC 1/08). Technical report, Universidad Com-
plutense, Departamento de Sistemas Informáticos y Computación, Madrid, Spain
(2008)

17. Shapiro, E.Y.: Logic programs with uncertainties: A tool for implementing rule-
based systems. In: Bundy, A. (ed.) Proceedings of the 8th International Joint Con-
ference on Artificial Intelligence (IJCAI 1983), pp. 529–532. Karlsruhe, Germany,
(1983)

18. Stärk, R.F.: A direct proof for the completeness of SLD-resolution. In: Börger, E.,
Kleine Büning, H., Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 382–383.
Springer, Heidelberg (1990)

19. Subrahmanian, V.S.: On the semantics of quantitative logic programs. In: Pro-
ceedings of the 4th IEEE Symposium on Logic Programming, San Francisco, pp.
173–182 (1987)

20. Subrahmanian, V.S.: Query processing in quantitative logic programming. In:
“Rusty” Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 81–100.
Springer, Heidelberg (1988)

21. Subrahmanian, V.S.: Uncertainty in logic programming: Some recollections. Asso-
ciation for Logic Programming Newsletter 20(2) (2007)

22. van Emden, M.H.: Quantitative deduction and its fixpoint theory. Journal of Logic
Programming 3(1), 37–53 (1986)

23. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a
programming language. Journal of the Association for Computing Machinery
(JACM) 23(4), 733–742 (1976)

Formalizing a Constraint Deductive Database

Language Based on Hereditary Harrop Formulas
with Negation

Susana Nieva1, Jaime Sánchez-Hernández1, and Fernando Sáenz-Pérez2,�

1 Dept. Sistemas Informáticos y Computación, UCM, Spain
2 Dept. Ingenieŕıa del Software e Inteligencia Artificial, UCM, Spain

{nieva,jaime,fernan}@sip.ucm.es

Abstract. In this paper, we present an extension of the scheme HH(C)
(Hereditary Harrop formulas with Constraints) with a suitable formula-
tion of negation in order to obtain a constraint deductive database query
language. In addition to constraints, our proposal includes logical con-
nectives (implication and quantifiers) for defining databases and queries,
which altogether are unavailable in current database query languages.

We define a proof theoretic semantic framework based on a sequent
calculus, that allows to represent the meaning of a database query by
means of a derived constraint answer in the sense of CLP. We also in-
troduce an appropriate notion of stratification, which provides a start-
ing point for suitable operational semantics dealing with recursion and
negation. We formalize a fixed point semantics for stratifiable databases,
whose fixpoint operator is applied stratum by stratum. This semantics
is proved to be sound and complete with respect to derivability in the
sequent calculus, and it provides the required support for actual imple-
mentations, as the prototype we have developed already and introduce
in this paper.

1 Introduction

The scheme HH(C) (Hereditary Harrop formulas with Constraints) [10] extends
HH by adding constraints, in a similar way the extension of LP (Logic Program-
ming) with constraints gave rise to the CLP (Constraint Logic Programming)
scheme [9]. In this scheme, a parametric domain of constraints is assumed, so
that it is possible to consider different instances (such as arithmetical constraints
over real numbers and finite domain constraints). The extension is completely
integrated into the language: Constraints are allowed to occur in goals, bodies
of clauses and answers.

For example, considering the instance HH (R), i.e., the domain of arithmetic
constraints over real numbers, a circle can be defined by its center and radius,
using non-linear constraints (in Prolog-like notation):

circle(XC,YC,R,X,Y) :- ((X-XC)**2 + (Y-YC)**2) ≤ R**2.

� The authors are partially supported by the Spanish projects ‘MERIT-FORMS’:
TIN2005-09207-C03-03, ‘PROMESAS-CAM’: S-0505/TIC/0407.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 289–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

290 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

We can ask, for instance, if any pair (x, y) such that x2 + y2 = 1 (the circum-
ference centered in the origin and radius 1) is inside the circle with center (0, 0)
and radius 2 by means of the goal:

∀ x ∀ y ((x**2 + y**2 ≈ 1) ⇒ circle(0,0,2,x,y)).

In this paper, we investigate the use of HH(C) not as a (general purpose)
programming language, but as the basis for database systems with constraints.
We argue that, in the same way that Datalog [20] and Datalog with constraints
[16] arise for modeling database systems inspired in Prolog and CLP respectively,
the language HH(C) can offer a suitable starting point for the same purpose.

HH(C) improves the expressivity of traditional deductive database languages
because the underlying logic embraces both new connectives and constraints.
In particular, implications can be used to write hypothetical queries, univer-
sal quantification allows encapsulation, and constraints allow managing infinite
data. To the best of our knowledge, former works (e.g., [15,18,17,5]) do not
consider all these features altogether.

Let us see an example. Assume an instance in which finite and real constraint
domains are combined. We can define the database:

flight(mad,par,1.5). flight(par,ny,10). flight(lon,ny,9).
travel(X,Y,T) :- flight(X,Y,D), T >= D.
travel(X,Y,T) :- flight(X,Z,T1), travel(Z,Y,T2), T >= T1+T2.

The relations flight and travel represent tuples <Origin, Destination,
FlightTime> for both direct and linked connections between cities (extensional
and intensional database, resp.). The implication

flight(mad, lon, T) ⇒ travel(mad, ny,11)

(a valid goal in our language) represents the query: Assuming that there is a
direct connection between Madrid and London, what duration should it have in
order to be able to travel from Madrid to New York in 11 hours at most? The
answer to this query will be the constraint 11 ≥ T + 9, which is equivalent to
T ≤ 2 in the constraint system.

Another hypothetical query to the previous database can be whether it is
possible to travel from Madrid to some place in any time greater than 1.5.
The goal formulation ∀ t (t > 1.5 ⇒ ∃ y travel(mad,y,t)) includes also
universal quantification, and the corresponding answer is true.

However, HH(C) lacks of negation, which is needed to capture set difference
in order to be complete with respect to Relational Algebra (RA). As it is well-
known, incorporating negation into logic programming languages is a difficult
task (see [2] for a survey). Negation in the specific field of deductive database
systems has been also widely studied [1,3]. In our language, negation is even more
complex due to the presence of implication and universal quantification in goals.
Based on an extension of the sequent calculus defined for HH(C) in [10], we pro-
vide a proof theoretic meaning of goals (queries) from programs (databases), in
such a way that the existence of constraints is exploited to represent answers and

Formalizing a Constraint Deductive Database Language 291

to finitely model infinite databases. This is also the case of constraint databases,
but as our core logic is very expressive, the resulting language is richer.

Using the database of the previous example, the query ¬∃ t flight(X,Y,t)
(or its equivalent ∀ t ¬ flight(X,Y,t)), which represents the cities in the
database that have no direct flights between them, is not available in extended
database languages as domain relational calculus or Datalog with constraints.
However, in our system —where formulas are interpreted in the context of the
constraint domain of the particular instance— ∀ t ¬ flight(X,Y,t) represents
a valid goal, and one of its possible answer constraints is: (¬(X ≈ mad)∨¬(Y ≈
par)) ∧ (¬(X ≈ par) ∨ ¬(Y ≈ ny)) ∧ (¬(X ≈ lon) ∨ ¬(Y ≈ ny)), which is
equivalent to X ≈ mad ∧ Y ≈ ny in the domain of the cities registered in the
current database.

After formalizing HH(C) with negation in Section 2, by means of the proof
theoretical meaning, in Section 3 we focus on the problem that arises when
dealing with recursion and negation: Termination. We adapt the usual notions
of stratified negation to our context in order to establish syntactic conditions that
characterize a limited form of negation, for which an operational semantics could
be defined. The main results of this paper appear in Section 4, where a fixed point
semantics, based on the previous notion of stratification, is defined and proved to
be sound and complete with respect to the proof theoretical one (full proofs can
be found in http://gpd.sip.ucm.es/papers/Archivos/nss-tr2008.pdf). As
it is shown in Section 5, this semantics provides support for an implementation.

2 HH(C) with Negation

The original formalisms in which HH(C) is founded [10,7] are not enough expres-
sive to represent set difference, so it is incomplete with respect to RA. We will
extend the scheme including negation to obtain a complete Constraint Deductive
Database (CDDB) language w.r.t. RA. Next, we make precise the syntax of the
formulas of HH(C) extended with negation, denoted as HH¬(C), showing how the
usual notions of programs and goals of Logic Programming can be translated
into databases and queries, respectively. The evaluation of a query with respect
to a deductive database can be seen as the computation of a goal from a set
of facts (ground atoms) defining the extensional database, and a set of clauses,
defining the intensional database. As it is common in deductive databases, the
definition of a predicate, by means of clauses, can be seen in our language as the
definition of a view in relational databases.

2.1 Syntax

As usual, formulas will be built up from terms, using predicates and connectives.
We consider defined predicate symbols, representing the names of database rela-
tions, to build atoms, and non-defined (built-in) predicate symbols, including at
least the equality predicate symbol ≈, to build constraints. We will also assume
a set of constant and operator symbols in the constraint system, and a set of
variables to build terms.

292 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

Well formed formulas in HH¬(C) can be classified into clauses D (defining
database relations) and goals (or queries) G. They are recursively defined by the
following rules:

D ::= A | G⇒ A | D1 ∧D2 | ∀xD
G ::= A |¬A | C | G1 ∧G2 | G1 ∨G2 | D ⇒ G | C ⇒ G| ∃xG | ∀xG

A represents an atom, i.e., a formula of the form p(t1, . . . , tn), where p is a
defined predicate symbol of arity n, and ti are terms; C represents a constraint.
The incorporation of negated atoms in goals is the surplus to HH(C).

The constraints we consider belong to a generic system C = 〈LC ,�C〉 where
LC is the constraint language and �C is a binary entailment relation. Γ �C
C denotes that the constraint C is inferred in the constraint system C from
the set of constraints Γ . Some minimal conditions are imposed to C to be a
constraint system: LC contains at least every first-order formula built up using

 (true), ⊥ (false), built-in predicate symbols, the connectives ∧,¬, and the
existential quantifier ∃. Regarding to �C , it includes the inference rules related
to the considered connectives and quantifiers, valid in intuitionistic logic with
equality; in addition, it is compact and generic (see [10] for details). The novelty
is that C is required to deal with negation, because the incorporation of ¬ to HH
is propagated to the constraint system, which has the responsibility of checking
the satisfiability of answers in the constraint domain.

We say that a constraint C is C-satisfiable if ∅ �C ∃C, where ∃C stands for
the existential closure of C. C and C′ are C-equivalent if C �C C′ and C′ �C C.

For instance, the constraint systems of the examples are assumed to verify
the required minimal conditions aforementioned. Moreover, they also include the
connective ∨, constants to represent numbers and cities, arithmetical operators,
and built-in predicates (≥, . . .).

Programs, denoted by Δ, are sets of clauses and represent databases. Any Δ
can always be given as an equivalent set, elab(Δ), of implicative clauses with
atomic heads in the way we precise now. The elaboration of a program Δ is the
set elab(Δ) =

⋃
D∈Δ elab(D), where elab(D) is defined by:

elab(A) = {
 ⇒ A} elab(D1 ∧D2) = elab(D1) ∪ elab(D2)
elab(G⇒ A) = {G⇒ A} elab(∀xD) = {∀xD′ |D′ ∈ elab(D)}
We will assume that a view defining a predicate is a set of elaborated clauses

of the form ∀x1 . . .∀xn(G ⇒ A)1. In the examples (as before), we will use the
common notation A :- G, assuming that capital letters inside A and G represent
variables that are implicitly universally quantified, and incorporating the new
connectives in goals. A is called the head and G the body of the clause as usual.
Negation is not allowed in the head of a clause, but inside its body.

Example 1. Assume a more realistic situation of the flights example in the In-
troduction, where flight delays may happen:

1 ∀x1 . . . ∀xn will be abbreviated by ∀x.

Formalizing a Constraint Deductive Database Language 293

deltravel(X,Y,T) :- flight(X,Y,T1), delay(X,Y,T2), T ≥ T1+T2.
deltravel(X,Y,T) :- flight(X,Z,T1), delay(X,Z,T2),

deltravel(Z,Y,T3), T ≥ T1+T2+T3.

Tuples of delay may be in the extensional database or may be assumed when
the query is formulated. For instance, the goal:

(∀ x delay(par,x,1),delay(mad,par,0.5))⇒ deltravel(mad,ny,T)

represents the query: What is the time needed to travel from Madrid to New
York assuming that for any destination there is a delay of one hour from Paris,
and the flight from Madrid to Paris is half an hour delayed? According to its
proof theoretic interpretation, in order to solve the goal deltravel(mad,ny,T),
the clauses delay(par,X,1) and delay(mad,par,0.5) will be added locally to
the database, and they will not be considered any more once the goal is solved.
Similar queries can be generalized as views (defined by clauses). For instance:

needtime(C1,C2,D,T) :- ∀ x delay(C1,x,D)⇒ deltravel(C1,C2,T).

Notice that this clause is neither allowed by Prolog with negation nor Datalog.
Since flights may or may not be delayed, a more general view can be defined

in order to know the expected time of a trip:

trip(X,Y,T) :- nondeltravel(X,Y,T) ; deltravel(X,Y,T).
nondeltravel(X,Y,T) :- ¬ delayed(X,Y), travel(X,Y,T).
delayed(X,Y) :- ∃ t (delay(X,Y,t), ¬ t ≈ 0).

2.2 Sequent Calculus

Several kinds of semantics have been defined for HH(C) without negation, in-
cluding proof theoretic, operational [10] and fixed point semantics [7], as well as
for its higher-order version [11]. The simplest way for explaining the meaning
of programs and goals in the present framework is by using a proof theoretic
semantics. Queries formulated to a database are interpreted by means of the
inference system that governs the underlying logic. This proof system, called
UC (Uniform sequent calculus handling Constraints) [10] is a sequent calculus
that combines traditional inference rules with the entailment relation �C of the
generic constraint system C. The rules defining derivability in UC appear in
Figure 1. Sequents have the form Δ; Γ � C, where programs and sets of con-
straints are on the left, and goals on the right.

Next, we explain the rules (∃R) and (Clause), the others correspond to wide-
spread intuitionistic rules introducing connectives on the right of the sequent
(see, e.g., [13]), except (CR) which deals with goals that are pure constraints.
(∃R) captures the fact that the witness in the proof of an existentially quantified
formula can be represented by a constraint that can be more general than an
equality x ≈ t simulating a substitution (e.g., (x ∗ x ≈ 2) represents the witness√

2, which cannot be written as a term). (Clause) represents backchaining and
allows to prove an atomic goal A ≡ p(t1, . . . , tn), using a program clause whose
head A′ ≡ p(t′1, . . . , t′n) is not required to unify with A, but rather solving a
new existentially quantified goal that, by applying the (∃R) rule, will result in

294 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

Γ �C C

Δ; Γ � C
(CR)

Δ; Γ � ∃x1 . . . ∃xn((A′ ≈ A) ∧ G)

Δ; Γ � A
(Clause) (∗), where

∀x1 . . . ∀xn(G ⇒ A′) is a variant of a formula of elab(Δ)

Δ; Γ � Gi

Δ; Γ � G1 ∨ G2
(∨R) (i = 1, 2)

Δ; Γ � G1 Δ; Γ � G2

Δ; Γ � G1 ∧ G2
(∧R)

Δ, D; Γ � G

Δ; Γ � D ⇒ G
(⇒R)

Δ; Γ, C � G

Δ; Γ � C ⇒ G
(⇒CR)

Δ; Γ, C � G[y/x] Γ �C ∃yC

Δ; Γ � ∃xG
(∃R)(∗∗) Δ; Γ � G[y/x]

Δ; Γ � ∀xG
(∀R)(∗∗)

(∗) x1, . . . , xn fresh for A
(∗∗) y fresh for the formulas in the conclusion

Fig. 1. Rules of the Sequent Calculus UC

a search for a constraint that implies the equality A′ ≈ A (that stands for
t′1 ≈ t1 ∧ . . . ∧ t′n ≈ tn).
UC provides only uniform proofs in the sense defined by Miller et al. [13],

i.e., goal-oriented proofs. The rules are applied backwards and, at any step, the
applied rule is that corresponding to the connective of the goal to be proved.

The Meaning of Negated Atoms. Derivability in UC provides proof theore-
tic semantics for HH(C). The incorporation of negation makes necessary to ex-
tend the notion of derivability, because there is no rule for this connective in UC.
Therefore, we extend UC with a new rule to incorporate derivability of negated
atoms. The idea of interpreting the query ¬A from a database Δ, by means of
an answer constraint C, is that whenever C′ is a possible answer to the query A
from Δ, then C �C ¬C′. This is formalized with the “metarule”:

Γ �C ¬C for every Δ; C � A

Δ; Γ � ¬A (¬R)

We say that (¬R) is a metarule since its premise considers any derivation Δ; C �
A of the atom A. In practice, there is a derivation of ¬A when the set of answer
constraints of A from Δ is finite.

We define the inference system UC¬ as UC plus the rule (¬R). The notation
Δ; Γ �UC¬ G means that the sequent Δ; Γ � G has a proof using the rules of
UC and (¬R).

Definition 1. If Δ; C �UC¬ G then C is called an answer constraint to the
query G in the database Δ.

Example 2. Consider the program below defining the inside of a rectangle with
left-bottom corner (X1, Y1) and right-top corner (X2, Y2).

Δ = { rectangle(X1,Y1,X2,Y2,X,Y) :- X≥X1, X≤X2, Y≥Y1, Y≤Y2 }

Formalizing a Constraint Deductive Database Language 295

It is possible to formulate a query to get the difference between two rectangles
(the dashed frame in the next figure) by the goal:

rectangle(0,0,4,4,X,Y), ¬ rectangle(1,1,3,3,X,Y)

obtaining as an answer constraint:
C ≡ ((y > 3) ∧ (y ≤ 4) ∧ (x ≥ 0) ∧ (x ≤ 4))∨

((y ≥ 0) ∧ (y < 1) ∧ (x ≥ 0) ∧ (x ≤ 4))∨
((y ≥ 0) ∧ (y ≤ 4) ∧ (x > 3) ∧ (x ≤ 4))∨
((y ≥ 0) ∧ (y ≤ 4) ∧ (x ≥ 0) ∧ (x < 1))

by the following deduction:
C �R ∃a1, a2, b1, b2, x1, y1(a1≈0 . . .)

Δ; C � ∃a1, a2, b1, b2, x1, y1(a1 ≈ 0 ∧ x1 ≈ x ∧ x1 ≥ a1∧
a2 ≈ 0 ∧ y1 ≈ y ∧ x1 ≤ b1 ∧ b1 ≈4 ∧ y1 ≥a2 ∧ b2 ≈4 ∧ y1 ≤b2)

(CR)

Δ; C � rectangle(0, 0, 4, 4, x, y)
(Clause)

D

Δ; C � rectangle(0, 0, 4, 4, x, y) ∧ ¬rectangle(1, 1, 3, 3, x, y)
(∧R)

where D is the deduction:

C �R ¬(x≥1 ∧ y≥1
∧x ≤ 3 ∧ y ≤ 3)

. . .

Δ; x ≥ 1 ∧ y ≥ 1
∧x ≤ 3 ∧ y ≤ 3 � rectangle(1, 1, 3, 3, x, y)

Δ; C � ¬rectangle(1, 1, 3, 3, x, y)
(¬R)

In order to define an operational semantics for HH¬(C), some finiteness con-
ditions must be imposed to make viable the metarule (¬R). That is, we have
to guarantee to get only a finite number of non-equivalent computed answer
constraints for any atom that occurs negated in some goal.

In this way, it is possible to impose the following restriction: A predicate q
can not occur negated in the definition of a predicate p if “q depends on p”. This
restriction establishes a limitation on mutually recursive definitions. But, even
in the case of adopting this strong syntactic restriction, completeness w.r.t. RA
remains, since RA does not include recursion.

In the next section, we formalize the concept of positive and negative depen-
dencies, and the stratifiable database notion is introduced.

3 Dependency Graphs and Stratified Negation

A well-known problem arises in deductive database languages when negation
and recursion are considered altogether. Several approaches have been used to
deal with this problem. This is the case of answer set programming [6] or the
use of stratified negation [20]. We have found this second approach more suitable
to our scheme, because HH¬(C) provides constraints as answers, and handles
implications, which involves dynamic program increase. Stratification is based
on the definition of a dependency graph for a program. Given a set of clauses and
goals Φ, the corresponding dependency graph DGΦ is a directed graph whose
nodes are the defined predicate symbols in Φ, and the edges are determined by
the implication symbols of the formulas.

296 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

Here, we adapt those notions as a useful starting point of a fixed point se-
mantics for our language. But now, the construction of dependency graphs must
consider the fact that implications may occur not only between the head and the
body of a clause, but also inside the goals, and therefore in any clause body. This
feature will be taken into account in the following way: An implication of the
form F1 ⇒ F2 produces edges (or paths) in the graph from the defined predicate
symbols inside F1 to every defined predicate symbol inside F2. An edge will be
negatively labeled when the corresponding atom occurs negated on the left of
the implication. Since constraints do not include defined predicate symbols, they
cannot produce dependencies. In [14], we defined an algorithm to compute the
dependency graph of any set Φ.

Example 3. Consider a database Δ consisting of the predicates defined in pre-
vious examples. The dependency graph for Δ is:

delayed

trip

nondeltravel

flight delay

deltraveltravel

The query G ≡ ∃ t (deltravel(X,Y,t) ⇒ delayed(X,Y)) would intro-
duce the new edge deltravel → delayed into the previous graph.

The dependency graph is used to define stratification in HH¬(C).

Definition 2. Given a set of formulas Φ, its corresponding dependency graph
DGΦ, and two predicates p and q, we say:

– q depends on p if there is a path from p to q in DGΦ.
– q negatively depends on p if there is a path from p to q in DGΦ with at least

one negatively labeled edge.

Definition 3. Let Φ be a set of formulas and P = {p1, . . . , pn} the set of defined
predicate symbols of Φ. A stratification of Φ is any mapping s : P → {1, . . . , n}
such that s(p) ≤ s(q) if q depends on p, and s(p) < s(q) if q negatively depends
on p. Φ is stratifiable if there is a stratification for it.

Example 4. A stratification for the database Δ of Example 3 will collect all the
predicates in the stratum 1 except nondeltravel and trip, which will be in
stratum 2. Intuitively, this means that for evaluating nondeltravel, the rest of
predicates (except trip) should be evaluated before (in particular, delayed).
Adding the query G in the Example 3, Δ∪{G} remains stratifiable, but adding
trip(mad,lon,T) ⇒ delay(mad,ny, T), results in a non-stratifiable set: This
adds the dependency trip → delay, and then, any stratification s must satisfy
s(trip) ≤ s(delay) < s(nondeltravel)≤ s(trip), that is impossible.

Formalizing a Constraint Deductive Database Language 297

A remarkable point is that we assume, on the follow, the existence of a fixed
stratification s for the considered sets Δ ∪ {G}.

It is useful to have a notion of the stratum of an atom (i.e., the stratum of
its predicate symbol), but also to extend this notion to any formula or set of
formulas.

Definition 4. Let F be a goal or a clause. The stratum of a formula F , denoted
str(F), is recursively defined as:

str(p(t1, . . . , tn)) = s(p) str(¬A) = 1 + str(A) str(C) = 1
str(F1�F2) = max(str(F1), str(F2)), where � ∈ {∧,∨,⇒}
str(QxF) = str(F), where Q ∈ {∃, ∀}

The stratum of a set of formulas Φ is str(Φ) = max{str(F) | F ∈ Φ}.

4 Fixed Point Semantics

We have extended the semantics presented in [7] in order to interpret full
HH¬(C). The semantics there defined is based on a forcing relation among pro-
grams, sets of constraints and goals that states whether an interpretation makes
true a goal G in the context 〈Δ, Γ 〉 of a program and a set of constraints. Inter-
pretations were defined as functions able to give meaning to every pair 〈Δ, Γ 〉 as
sets of atoms. The interpretation should depend on this context because, when
computing implicative goals, Δ or Γ may be augmented.

In order to deal with negation, interpretations and the fixpoint operator will
operate over strata. So, contexts will be stratifiable databases (that may aug-
ment). An interpretation over a stratum i of a database will be a set of pairs
(A, C) ∈ At× SLC (atom, C-satisfiable constraint), where str(A) ≤ i.

4.1 Stratified Interpretations and Forcing Relation

Let W be the set of stratifiable databases Δ (with respect to the same fixed
stratification s), At be the set of open atoms, and SLC be the set of C-satisfiable
constraints modulo C-equivalence.

We will consider functions I : W → P(At × SLC). In order to simplify the
notation, we write (A, C) ∈ At× SLC , assuming that C denotes any constraint
C-equivalent to it. The notation [I(Δ)]i represents the following subset of I(Δ),

[I(Δ)]i = {(A, C) ∈ I(Δ) | str(A) = i}.
Notice that if str(Δ) = k, then {[I(Δ)]i | 1 ≤ i ≤ k} is a partition of I(Δ).

Interpretations can be classified on strata. An interpretation gives information
up to its corresponding stratum.

Definition 5. Let i ≥ 1. An interpretation I over the stratum i is a function
I : W → P(At × SLC), such that for any Δ ∈ W, and any j > i, [I(Δ)]j = ∅.
We denote by Ii the set of interpretations over i.

For every i ≥ 1, an order on Ii can be defined.

298 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

Definition 6. Let i ≥ 1 and I1, I2 ∈ Ii. I1 is less or equal than I2 at stratum
i, denoted by I1 �i I2, if for each Δ ∈ W the following conditions are satisfied:

– [I1(Δ)]j = [I2(Δ)]j , for every 1 ≤ j < i.
– [I1(Δ)]i ⊆ [I2(Δ)]i.

It is straightforward to check that for any i ≥ 1, (Ii,�i) is a poset.
The idea is that when an interpretation over a stratum i increases, the infor-

mation of the smaller strata remains invariable. In such a way, if str(¬A) = i,
since str(A) = i− 1, the truth value of ¬A at the stratum i will remain invari-
able and monotonicity of the truth relation can be guaranteed even for negative
atoms, as we will show.

In addition, the following result holds.

Lemma 1. For any i ≥ 1, any chain of interpretations of (Ii,�i), {In}n≥0,
such that I0 �i I1 �i I2 �i . . ., has a least upper bound

⊔
n≥0 In, which can be

defined as: (
⊔

n≥0 In)(Δ) =
⋃

n≥0{In(Δ)}, for any Δ ∈ W.

Proof. Straightforward using the definition of (Ii,�i). ��
The following definition formalizes the notion of a query G being “true” for an
interpretation I in the context of a database Δ, if the constraint C is satisfied.
As already said, we assume that s is not only a stratification for Δ, but also for
Δ ∪ {G}.
Definition 7. Let i ≥ 1. The forcing relation �� between pairs I, Δ and pairs
(G, C) (where I ∈ Ii, str(G) ≤ i, and C is C-satisfiable) is recursively defined
by the rules below. When I, Δ �� (G, C), it is said that (G, C) is forced by I, Δ.

– I, Δ �� (C′, C) ⇐⇒ C �C C′.
– I, Δ �� (A, C) ⇐⇒ (A, C) ∈ I(Δ).
– I, Δ �� (¬A, C) ⇐⇒ for every (A, C′) ∈ I(Δ), C �C ¬C′ holds. If there is

no pair of the form (A, C′) in I(Δ), then C ≡
.
– I, Δ �� (G1 ∧G2, C) ⇐⇒ for each i ∈ {1, 2}, I, Δ �� (Gi, C).
– I, Δ �� (G1 ∨G2, C) ⇐⇒ for some i ∈ {1, 2} I, Δ �� (Gi, C).
– I, Δ �� (D ⇒ G, C) ⇐⇒ I, Δ ∪ {D} �� (G, C).
– I, Δ �� (C′ ⇒ G, C) ⇐⇒ I, Δ �� (G, C ∧ C′).
– I, Δ �� (∃xG, C) ⇐⇒ there is C′ such that I, Δ �� (G[y/x], C′), where y

does not occur free in Δ, ∃xG, C, and C �C ∃yC′.
– I, Δ �� (∀xG, C) ⇐⇒ I, Δ �� (G[y/x], C) where y does not occur free in Δ,
∀xG, C.

Those rules are well-defined because if s is a stratification for Δ ∪ {G}, with
str(G) ≤ i, and G′ is a subformula of G, then s is also a stratification for
Δ ∪ {G′}, and str(G′) ≤ i. Notice that, for the particular case G ≡ D ⇒ G′, s
will be also a stratification for Δ ∪ {D, G′}.

From now on, when we write I, Δ �� (G, C) we will assume that if I ∈ Ii,
then str(G) ≤ i and C is C-satisfiable. The relation �� is not defined otherwise.
Formally, �� should be denoted ��i, because there is a forcing relation for each
Ii. We avoid the subindex in order to simplify the notation.

The following lemma establishes the monotonicity of the forcing relation.

Formalizing a Constraint Deductive Database Language 299

Lemma 2. Let i ≥ 1 and I1, I2 ∈ Ii such that I1 �i I2. Then, for any Δ ∈ W,
and (G, C) ∈ G × SLC, it holds I1, Δ �� (G, C) =⇒ I2, Δ �� (G, C).

Proof. The proof is inductive on the structure of G and it is derived from the
definitions of the forcing relation and the order between interpretations. We only
show the case of negation.

Assume I1, Δ �� (¬A, C). Then, either C �C ¬C′ for every C′ such that
(A, C′) ∈ I1(Δ), or there is no such C′ and C ≡
. Since str(¬A) ≤ i, obviously
str(A) = j, for some j < i. But then [I2(Δ)]j = [I1(Δ)]j , because I1 �i I2, and
therefore I2, Δ �� (¬A, C). ��
Lemma 3. Let i ≥ 1 and let {In}n≥0 be a denumerable family of interpretations
over the stratum i, such that I0 �i I1 �i I2 �i Then, for any Δ, G and C,⊔

n≥0 In, Δ �� (G, C) ⇐⇒ there exists k ≥ 0 such that Ik, Δ �� (G, C).

Proof. The implication to the left is a consequence of Lemma 2, since Ik �i⊔
n≥0 In holds for any k. The converse is proved by induction on the structure

of G, using the result of Lemma 1. We show one of the cases.

(∃xG′)
⊔

n≥0 In, Δ �� (∃xG′, C) ⇐⇒ there is a variable y that does not occur
free in Δ, ∃xG′, and C, such that

⊔
n≥0 In, Δ �� (G′[y/x], C′), and C �C

∃yC′. By induction hypothesis, it holds Ik, Δ �� (G′[y/x], C′) for some k ≥ 0.
Therefore, there is a k ≥ 0 such that Ik, Δ, �� (∃xG′, C). ��

Next, a continuous operator for every stratum transforming interpretations is
defined. Its least fixed point supplies the expected version of truth at each
stratum.

Definition 8. Let i ≥ 1 represent a stratum. The operator Ti : Ii −→ Ii

transforms interpretations over i as follows. For any I ∈ Ii, Δ ∈ W, and
(A, C) ∈ At× SLC, (A, C) ∈ Ti(I)(Δ) when:

– (A, C) ∈ [I(Δ)]j for some j < i or
– str(A) = i and there is a variant ∀x(G ⇒ A′) of a clause in elab(Δ), such

that the variables x do not occur free in A, and I, Δ �� (∃x(A ≈ A′∧G), C).

The crucial aspect of Ti is: For a database Δ, Ti incorporates information ob-
tained exclusively from the clauses of Δ, whose heads are atoms of the stra-
tum i, and the information of smaller strata remains invariable. Notice that if
str(A) = i, then str(∃x(A ≈ A′ ∧G)) ≤ i and Ti is well-defined.

In order to establish the existence of a fixed point of Ti, it will be proved to
be monotonous and continuous.

Lemma 4 (Monotonicity of Ti). Let i ≥ 1 and I1, I2 ∈ Ii such that I1 �i I2.
Then, Ti(I1) �i Ti(I2).

Proof. Let us consider any Δ and (A, C) ∈ Ti(I1)(Δ). This implies that str(A) ≤
i. If str(A) = j < i, then (A, C) ∈ [I1(Δ)]j = [I2(Δ)]j , because I1 �i I2 and
j < i. Hence (A, C) ∈ Ti(I2)(Δ), by definition of Ti. If str(A) = i, then there is a

300 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

variant ∀x(G⇒ A′) of a clause of Δ, such that the variables x do not occur free in
A, and I1, Δ �� (∃x(A ≈ A′ ∧G), C). Using Lemma 2 and the fact that I1 �i I2,
we obtain I2, Δ �� (∃x(A ≈ A′ ∧ G), C), which implies (A, C) ∈ Ti(I2)(Δ), by
definition of Ti. ��

Lemma 5 (Continuity of Ti). Let i ≥ 1 and {In}n≥0 be a denumerable family
of interpretations over i, such that I0 �i I1 �i I2 �i Then Ti(

⊔
n≥0 In) =⊔

n≥0 Ti(In).

Proof. The inclusion ⊇ is a consequence of the monotonicity of Ti. Let us
prove the inclusion ⊆. Consider any Δ and (A, C) ∈ Ti(

⊔
n≥0 In)(Δ). Then

str(A) ≤ i. If str(A) = j < i, (A, C) ∈ [Ti(
⊔

n≥0 In)(Δ)]j = [I0(Δ)]j , then
(A, C) ∈ Ti(I0)(Δ) ⊆ ⋃

n≥0 Ti(In)(Δ) = (
⊔

n≥0 Ti(In))(Δ). If str(A) = i, there
is a variant ∀x(G ⇒ A′) of a clause of Δ, such that the variables x do not
occur free in A, and

⊔
n≥0 In, Δ �� (∃x(A ≈ A′ ∧ G), C). Thanks to Lemma

3, there exists k ≥ 0, such that Ik, Δ �� (∃x(A ≈ A′ ∧ G), C), and therefore
(A, C) ∈ Ti(Ik)(Δ). As a consequence, also in this case Ti(

⊔
n≥0 In)(Δ) ⊆⋃

n≥0 Ti(In)(Δ) = (
⊔

n≥0 Ti(In))(Δ). ��

Proposition 1. The operator T1 has a least fixed point, which is
⊔

n≥0 T n
1 (I⊥),

where the interpretation I⊥ represents the constant function ∅.

Proof. By the Knaster-Tarski fixed point theorem [19], using Lemma 5. ��

Let fix1 denote
⊔

n≥0 T n
1 (I⊥), i.e., the least fixed point at stratum 1.

Consider now the following sequence {T n
2 (fix1)}n≥0 of interpretations in

(I2,�2). Using the properties of Ti, it is easy to prove by induction on n ≥ 0
that this sequence is a chain

fix1 �2 T2(fix1) �2 T2(T2(fix1)) �2 . . . ,�2 T n
2 (fix1), . . .

As before, in accordance with Lemmas 1 and 5, {T n
2 (fix1)}n≥0 has a least

upper bound,
⊔

n≥0 T n
2 (fix1), in (I2,�2) that is a fixed point of T2, denoted by

fix2. Proceeding successively on the same way, a chain:

fixi−1 �i Ti(fixi−1) �i Ti(Ti(fixi−1)) �i . . . ,�i T n
i (fixi−1), . . .

can be defined for any stratum i > 1, and a fixed point of it

fixi =
⊔

n≥0

T n
i (fixi−1)

can be found.
In particular, if str(Δ) = k, we simplify fixk writing fix. Then, fix(Δ)

represents the pairs (A, C) such that A can be deduced from Δ if C is satisfied.
Notice that fix(Δ) is computed by saturating strata sequentially from fix1(Δ)
up to fixk(Δ), using for every i only the clauses of the stratum i.

Formalizing a Constraint Deductive Database Language 301

4.2 Soundness and Completeness

The fixed point semantics defined in [7] for HH(C) was proved to be sound and
complete with respect to the calculus UC. Our interest now is to prove soundness
and completeness of the new fixed point semantics for HH¬(C), with respect to
the extended calculus UC¬. This means that the forcing relation, considering the
least fixed point at the last stratum of a database and a query, coincides with
derivability in UC¬. More precisely, if str(G) = i, (G, C) is forced by fixi in the
context of Δ if and only if C is an answer constraint of G from Δ.

Without negation, any database Δ and query G have a stratification with
only one stratum. If this is the case, soundness and completeness are similar to
those results for HH(C).
Proposition 2. For every Δ ∈ W, and every pair (G, C) ∈ G×SLC, if str(G) =
1 then: fix1, Δ �� (G, C) ⇐⇒ Δ; C �UC¬ G.

Proof. The proof is an adaptation of those presented in [7] to the definition of
the forcing relation defined now for HH¬(C). Notice that, since we are assuming
that str(G) = 1, then the case G ≡ ¬A has not to be considered. ��
Now, we consider the general case.

Theorem 1 (Soundness and Completeness). For every i ≥ 1, Δ ∈ W, and
every pair (G, C) ∈ G × SLC, if str(G) ≤ i then:

fixi, Δ �� (G, C) ⇐⇒ Δ; C �UC¬ G.

Proof. By induction on i. Proposition 2 is the proof of the case i = 1.
For i > 1, assume the induction hypothesis: for every Δ, G, C, with str(G) ≤

i− 1: fixi−1, Δ �� (G, C) ⇐⇒ Δ; C �UC¬ G.
The proof is analogous to the base case, except for ¬A. Let us analyze this

case: fixi, Δ �� (¬A, C) ⇐⇒ for every C′ such that (A, C′) ∈ fixi(Δ), it
holds C �C ¬C′, or there is no such C′ and C ≡
. Obviously, str(¬A) ≤
i − 1, then the previous sentence is equivalent to say that for every C′ such
that fixi−i, Δ �� (A, C′), it holds C �C ¬C′, or there is no such C′ and C ≡
.
Applying the induction hypothesis, it is equivalent to say that either for every
C′ such that Δ; C′ �UC¬ A and C �C ¬C′ holds, or there is not such C′ and
C ≡
. This is equivalent to Δ; C �UC¬ ¬A.

As a consequence of this theorem: (A, C) ∈ fix(Δ) ⇐⇒ Δ; C �UC¬ A. This
means that the atoms in the fixed point of a database are those that can be
derived by the calculus.

The advantage of this fixed point semantics over the proof theoretic one is
that it can be considered as the formal basis of particular implementations of
database systems based on HH¬(C). The prototype presented in the next section
is a proof of it. Notice that the previous formalisms are defined for a generic
constraint system C as a black box for which the existence a solver that checks
C-satisfiability has been assumed. The complexity of an implementation will
depend on the particular instance domain and solver.

302 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

5 Implementing an Instance

In this section, we briefly report a Prolog-implemented prototype of HH¬(D),
where D is a basic finite domain constraint system with equality and disequal-
ity. It has as input a database Δ and, if stratifiable, computes the set fix(Δ).
Δ contains not only the extensional and intensional databases, but also the
translation of the user query G into a clause goal(X) :- G, where X are the
free variables of G. So, if the computed fix(Δ) contains for instance the pair
(goal(X1, . . . , Xn), X1 ≈ t1 ∧ . . . ∧Xn ≈ tn), then X1 ≈ t1 ∧ . . . ∧Xn ≈ tn is
an answer to G.

Computing the outcome corresponding to a set Δ follows some stages: 1)
Build the dependency graph, 2) Compute a stratification (if there is any), and,
if succeeds, 3) Compute fix(Δ) as a set of pairs (A, C) for the stratification.
For the first stage, the algorithm in [14] has been used. For the second one, the
dependency graph is used as an input to an algorithm following Definition 4.

A more elaborated computation is needed for the third stage: fix(Δ) is com-
puted sequentially, from fix1(Δ) up to fixk(Δ), where k = str(Δ). When com-
puting the information of stratum i, only pairs (A, C) such that str(A) = i are
calculated, and the information of smaller strata remains invariable. Following
Definition 8, the successive iterations of the fixpoint operator Ti deliver new
pairs which are obtained by considering the pairs deduced in previous iterations
in the context of Δ and every ground instance of the clauses defining predicates
of stratum i. As Ti is monotonous (Lemma 4) and we deal with a finite domain
constraint system, a terminating loop finds all the pairs for a given fixi(Δ).
The set fixi(Δ) is completely evaluated when no pair (A, C) is added after an
iteration of Ti. Therefore, the stratum i is saturated and the computation of
fixi+1(Δ) begins, applying Ti+1 to the just calculated fixi(Δ).

The forcing relation is implemented by means of the Prolog predicate force
that makes calls to the constraint solver, which solves constraints for the parti-
cular finite domain system.

However, care has to be taken when programming force for the case D ⇒ G.
Following Definition 7, G has to be proved in the context of the database aug-
mented with the clause D. This turns out to be more complex to be computed,
since the head of the clause added to the current context may belong to stratum
j, where j < i and, therefore, fixj(Δ ∪ {D}) must be calculated, which we call
a subcomputation level (level in short) involving the local clause D. Once G is
solved, both D and the deduced pairs are ignored for the rest of the computation.

The pairs proved at each iteration of the fixpoint operator as well as the database
clauses are stored as Prolog facts. As there may be facts and clauses belonging to
different levels, we identify them with a number for the corresponding level. The
main level is identified as 0. For example, when using a clause as p(a):- q(a,b)
=> r(b) at level l, the goal q(a,b) => r(b) must be forced, for which the local
clause q(a,b) is added at level l + 1. Now, the goal r(b) will be tried to be forced
at level l + 1. When this is done, q(a,b) is removed from the database and the
computation returns to level l, where a pair corresponding to p(a) will be added
to the current fixed point if r(b) was forced in that augmented context.

Formalizing a Constraint Deductive Database Language 303

As an executable example, let us consider again Example 1, where real
constraints have been removed. The query: “Assuming a flight from Paris to
London, what cities are reachable from Madrid?” can be represented as G ≡
flight(par,lon) => trip(mad,X). The clause goal(X):- G is added to the
database for solving G. Executing this example delivers the following meaning:

[...,(goal(X),X ≈ par),(goal(X),X ≈ ny),(goal(X),X ≈ lon),...]

Therefore, we can conclude that it is possible to travel to Paris, New York and
London assuming that flight.

6 Conclusions

We have studied the application of the constraint logic programming scheme
HH(C) as a CDDB system. With this purpose, this scheme has been extended
with a suitable formulation of negation. The result provides a database language
more expressive than former ones [15,18,17,5], because HH¬(C) owns constraints
as well as implication and quantifiers altogether.

Two semantics, based on proof theory and fixed point techniques, have been
defined to formalize the system, and proved to be equivalent for stratifiable
databases. Both semantics are interesting per se. The former allows to represent
the meaning of a database query by means of a derived constraint answer. In ad-
dition, the uniformity of the sequent calculus that governs HH¬(C) is preserved,
because only a rule introducing the connective ¬ on the right (but not on the
left) of the sequent is added. Then, proofs remain guided by the structure of
the goal. However, it can not be considered as a practical operational semantics.
Some aspects, as finiteness of the set of answers for an atom A when ¬A is
computed, are obviated.

The fixed point semantics relies on stratified negation and constitutes a formal
basis for practical implementations. Stratification has been defined as a syntac-
tical criterion to determine if a query database can be potentially be computed
in a finite number of steps. When ¬A are going to be proved, the stratum of A
has been previously saturated and ¬A can be correctly computed.

The prototype introduced at the end of this paper is based in the formal mech-
anisms that support this semantic approach for a concrete constraint system. In
addition, this semantics supplies a framework in which properties of databases
can be analyzed. For instance, if Δ1, Δ2 are two stratifiable databases (consid-
ering the same stratification for simplicity), it can be said that Δ1 and Δ2 are
equivalent if fix(Δ1) = fix(Δ2).

Regarding future work: First, investigate the relaxation of the strong require-
ment about program stratification, as done in answer set programming [6], also
extended to include constraints [4,12]. Second, analyze the requirements that
should be imposed to C in order to obtain a safe instance of HH¬(C), as done
via safety levels in constraint database languages [17]. Finally, develop the cur-
rent prototype implementation to deal with other particular instances based on
useful constraint systems handling combined constraint domains [8].

304 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Apt, K., Bol, R.: Logic Programming and Negation: A Survey. Journal of Logic
Programming 19&20, 9–71 (1994)

3. Benedikt, M., Libkin, L.: Safe constraint queries. In: PODS 1998: Proceedings of
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 99–108. ACM Press, New York (1998)

4. Bonatti, S.B.P.A., Gelfond, M.: Towards an integration of answer set and constraint
solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–
66. Springer, Heidelberg (2005)

5. Bonner, A.J., McCarty, L.T., Vadaparty, K.: Expressing Database Queries with
Intuitionistic Logic. In: Lusk, E.L., Overbeek, R.A. (eds.) Proceedings of the North
American Conference on Logic Programming, pp. 831–850 (1989)

6. Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming.
In: Artëmov, S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J.
(eds.) We Will Show Them (1), pp. 615–664. College Publications (2005)

7. Garćıa-Dı́az, M., Nieva, S.: Providing Declarative Semantics for HH Extended Con-
straint Logic Programs. In: Proceedings of the 6th ACM SIGPLAN Int. Conf. on
PPDP, pp. 55–66 (2004)

8. Hofstedt, P., Pepper, P.: Integration of declarative and constraint programming.
Theory Pract. Log. Program. 7(1-2), 93–121 (2007)

9. Jaffar, J., Lassez, J.-L.: Constraint Logic Programming. In: 14th ACM Symp. on
Principles of Programming Languages (POPL 1987), Munich, Germany, January
1987, pp. 111–119. ACM Press, New York (1987)

10. Leach, J., Nieva, S., Rodŕıguez-Artalejo, M.: Constraint Logic Programming with
Hereditary Harrop Formulas. TPLP 1(4), 409–445 (2001)

11. Lipton, J., Nieva, S.: Higher-order logic programming languages with constraints:
A semantics. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 272–289.
Springer, Heidelberg (2007)

12. Mellarkod, V.S.: Integrating ASP and CLP Systems: Computing Answer Sets from
Partially Ground Programs. PhD thesis, Texas Tech University (2007)

13. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform Proofs as a Foundation
for Logic Programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

14. Nieva, S., Sáenz-Pérez, F., Sánchez, J.: Towards a constraint deductive database
language based on hereditary harrop formulas. In: Lucio, P., Orejas, F. (eds.) Sextas
Jornadas de Programación y Lenguajes, PROLE, pp. 171–182 (2006)

15. Pustejovsky, J., Revesz, P.Z. (eds.): Proc. 13th International Symposium on Tem-
poral Representation and Reasoning. IEEE Computer Society Press, Los Alamitos
(2006)

16. Revesz, P.Z.: Datalog and Constraints. In: Kuper, G., Libkin, L., Paredaens, J.
(eds.) Constraint Databases, ch. 7, pp. 151–174. Springer, Heidelberg (2000)

17. Revesz, P.Z.: Introduction to Constraint Databases. Springer, Heidelberg (2002)
18. Scholl, P.R.M., Voisard, A.: Spatial databases with application to GIS. Morgan

Kaufmann Publishers Inc., San Francisco (2002)
19. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-

nal of Mathematics 5, 285–309 (1955)
20. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., Zicari,

R.: Advanced Database Systems. Morgan Kaufmann Publishers Inc., San Francisco
(1997)

Declarative Diagnosis of Missing Answers in

Constraint Functional-Logic Programming

Rafael Caballero, Mario Rodŕıguez Artalejo,
and Rafael del Vado Vı́rseda�

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid
{rafa,mario,rdelvado}@sip.ucm.es

Abstract. We present a declarative method for diagnosing missing com-
puted answers in CFLP (D), a generic scheme for lazy Constraint Func-
tional-Logic Programming which can be instantiated by any constraint
domain D given as parameter. As far as we know, declarative diagno-
sis of missing answers in such an expressive framework has not been
tackled before. Our approach combines and extends previous work done
separately for constraint logic programming and lazy functional program-
ming languages. Diagnosis can be started whenever a user finds that the
set of computed answers for a given goal with finite search space misses
some expected solution w.r.t. an intended interpretation of the program,
that provides a declarative description of its expected behavior. Diagno-
sis proceeds by exploring a proof tree, that provides a declarative view
of the answer-collection process performed by the computation, and it
ends up with the detection of some function definition in the program
that is incomplete w.r.t. the intended interpretation. We can prove the
logical correctness of the diagnosis method under the assumption that
the recollection of computed answers performed by the goal solving sys-
tem can be represented as a proof tree. We argue the plausibility of this
assumption, and we describe the prototype of a tool which implements
the diagnosis method.

1 Introduction

Debuggers are a practical need for helping programmers to understand why their
programs do not work as intended. Declarative programming paradigms invol-
ving complex operational details, such as constraint solving and lazy evaluation,
do not fit well to traditional debugging techniques relying on the inspection of
low-level computation traces. For this reason, the design of usable debugging
tools becomes a difficult task. As a solution to this problem, and following a
seminal idea by Shapiro [28], declarative diagnosis (a.k.a. declarative debugging
or algorithmic debugging) proposes to use Computation Trees (shortly, CT s) in

� The authors have been partially supported by the Spanish National Projects MERIT-
FORMS (TIN2005-09027-C03-03) and PROMESAS-CAM (S-0505/TIC/0407).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 305–321, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

place of traces. CT s are built a posteriori to represent the structure of a com-
putation whose top-level outcome is regarded as a symptom of the unexpected
behavior by the user, with results attached to their nodes representing the com-
putation of some observable result, and such that the result at any internal node
follows from the results at the children nodes, using a program fragment also
attached to the node. Declarative diagnosis explores a CT looking for a so-called
buggy node which computes an unexpected result from children whose results are
all expected. Each buggy node points to a program fragment responsible for the
unexpected behavior. The search for a buggy node can be implemented with the
help of an external oracle (usually the user with some semiautomatic support)
who has a reliable declarative knowledge of the expected program semantics, the
so-called intended interpretation.

The generic description of declarative diagnosis in the previous paragraph
follows [22]. Declarative diagnosis was first proposed in the field of Logic Pro-
gramming (LP) [28,14,18], and it has been successfully extended to other decla-
rative programming paradigms, including (lazy) Functional Programming (FP)
[25,24,27,26], Constraint Logic Programming (CLP) [1,30,15] and Functional
Logic Programming (FLP) [23,6,7]. The nature of unexpected results differs
according to the programming paradigm. Unexpected results in FP are mainly
incorrect values, while in CLP and FLP an unexpected result can be either a sin-
gle computed answer regarded as incorrect, or a set of computed answers (for one
and the same goal with a finite search space) regarded as incomplete. These two
possibilities give rise to the declarative diagnosis of wrong and missing computed
answers, respectively. The case of unexpected finite failure of a goal is a particular
symptom of missing answers with special relevance. However, diagnosis methods
must consider the more general case, since finite failure of a goal is often caused
by non-failing subgoals that do not compute all the expected answers.

In contrast to alternative approaches to error diagnosis based on abstract in-
terpretation techniques [17], declarative diagnosis often involves complex queries
to the user. This problem has been tackled by means of various techniques, such
as user-given partial specifications of the program’s semantics [1,7], safe inferen-
ce of information from answers previously given by the user [6], or CT s tailored
to the needs of a particular debugging problem over a particular computation
domain [15]. Another practical problem with declarative diagnosis is that the
size of CT s can cause excessive overhead in the case of computations that de-
mand a big amount of computer storage. As a remedy, techniques for piecemeal
construction of CT s have been considered; see [26] for a recent proposal in the
FP field.

In spite of the above mentioned difficulties, we are confident that declara-
tive diagnosis methods can be useful for detecting programming bugs by obser-
ving computations whose demand of computer storage is modest. In this paper,
we present a declarative method for diagnosing missing computed answers in
CFLP (D) [20], a generic scheme for lazy Constraint Functional-Logic Program-
ming which can be instantiated by any constraint domain D given as parameter,
and supports a powerful combination of functional and constraint logic program-
ming over D. Sound and complete goal solving procedures for the CFLP (D)

Declarative Diagnosis of Missing Answers in CFLP 307

scheme have been obtained [19,11,12]. Moreover, useful instances of this scheme
have been implemented in the T OY system [21] and tested in practical applica-
tions [13].

The rest of the paper is organized as follows: Section 2 motivates our approach
and presents a debugging example, intended to illustrate the main features of
our diagnosis method. Section 3 presents the abbreviated proof trees used as
CT s in our method, as well as the results ensuring the logical correctness of
the diagnosis. Section 4 presents a prototype debugger under development, and
Section 5 concludes and gives an overview of planned future work. Full proofs of
the main results given in Section 3 are available in [10].

2 Motivation

While methods and tools for the declarative diagnosis of wrong answers are
known for FLP [23,6,7] and CFLP [4,8] languages, we are not aware of any
research concerning the declarative diagnosis of missing answers in CFLP lan-
guages, except our poster presentation [9]. However, missing answers are a com-
mon problem which can arise even in the absence of wrong answers.

We are interested in the declarative diagnosis of missing answers in CFLP (D)
[20], a very expressive generic scheme for Functional and Constraint Logic Pro-
gramming over a constraint domain D given as parameter. Each constraint do-
main provides basic values and primitive operations for building domain specific
constraints to be used in programs and goals. Useful constraint domains include
the Herbrand domain H for equality (==) and disequality (/=) constraints over
constructed data values; the domain R for arithmetic constraints over real num-
bers; and the domain FD for finite domain constraints over integer values.

The CFLP (D) scheme supports programming with lazy functions that may
be non-deterministic and/or higher-order. Programs P include program rules of
the form f t1 . . . tn → r ⇐ Δ, abbreviated as f tn → r ⇐ Δ, with Δ omitted
if empty. Such a rule specifies that f when acting over parameters matching
the patterns tn at the left hand side, will return the values resulting from the
right hand side expression r, provided that the constraints in Δ can be satisfied.
Goals G for a given program have the general form ∃U. (R � S), where ∃U is an
existentially quantified prefix of local variables, R = (P � Δ) is the yet unsolved
part, including productions e → s in P and constraints in Δ, and S = (Π � σ)
is the constraint store, consisting of primitive constraints Π and an idempotent
substitution σ. Productions e → s are solved by lazy narrowing, a combination
of unification and lazy evaluation; the expression e must be narrowed to match
the pattern s. Initial goals have neither productions nor local variables, and
solved goals have the form ∃U. S. Solved goals are also called computed answers
and abbreviated as Ŝ.

In this paper we focus mainly in CFLP (D) programming as implemented in
T OY [21]. The interested reader is referred to [20,19,11] for formal details on
the declarative and operational semantics of the CFLP (D) scheme.

308 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

The following small CFLP (H)-program PfD, written in T OY syntax, in-
cludes program rules for the non-deterministic functions (//) and fDiff, and
the deterministic functions gen and even. Note the infix syntax used for (//),
as well as the use of the equality symbol = in place of the rewrite arrow --> for
the program rules of those functions viewed as deterministic by the user. This
is just meant as user given information, not checked by the T OY system, which
treats all the program defined functions as possibly non-deterministic.

infixr 40 // % non-deterministic choice operator

(//) :: A -> A -> A
X // _ --> X
_ // Y --> Y

fDiff :: [A] -> A
fDiff [X] --> X
fDiff (X:Y:Zs) --> X // fDiff (Y:Zs) <== X /= Y
fDiff (X:Y:Zs) --> X <== X == Y

gen :: A -> A -> [A] even :: int -> bool
gen X Y = X : Y : gen Y X even N = true <== (mod N 2) == 0

Function fDiff is intended to return any element belonging to the longest pre-
fix Xs of the list given as parameter such that Xs does not include two identical
elements in consecutive positions. In general, there will be several such elements,
and therefore fDiff is non-deterministic. Function gen is deterministic and re-
turns a potentially infinite list of the form [d1, d2, d2, d1, d1, d2, ...], where the
elements d1 and d2 are the given parameters. Therefore, the lazy evaluation of
(fDiff (gen 1 2)) is expected to yield the two possible results 1 and 2 in al-
ternative computations, and the initial goal GfD : even (fDiff (gen 1 2)) ==
true for PfD is expected to succeed, since (fDiff (gen 1 2)) is expected to
return the even number 2. However, if the third program rule for function fDiff
were missing in program PfD, the expression (fDiff (gen 1 2)) would return
only the numeric value 1, and therefore the goal GfD would fail unexpectedly. At
this point, a diagnosis for missing answers could take place, looking for a buggy
node in a suitable CT in order to detect some incomplete function definition
(that of function fDiff, in this case) to be blamed for the missing answers.

We propose to use CT s whose nodes have attached so-called answer collection
assertions, briefly acas. The aca at the root node has the form G0 ⇒

∨
i∈I Ŝi,

where G0 is the initial goal and
∨

i∈I Ŝi (written as the failure symbol � if I = ∅)
is the disjunction of computed answers observed by the user. This root aca as-
serts that the computed answers cover all the solutions of the initial goal, and
will be regarded as a false statement in case that the user misses computed
answers. For example, the root aca corresponding to the initial goal GfD for
program PfD is even (fDiff (gen 1 2)) == true ⇒ � stating that this goal
has (unexpectedly) failed. The acas at internal nodes in our CT s have the form
ftn → t � S ⇒

∨
i∈I Ŝi, asserting that the disjunction of computed answers

Declarative Diagnosis of Missing Answers in CFLP 309

∨
i∈I Ŝi covers all the solutions for the intermediate goal G′ : ftn → t � S.

Note that G′ asks for the solutions of the production ftn → t which satisfy the
constraint store S. The acas of this form correspond to the intermediate calls to
program defined functions f needed for collecting all the answers computed for
the initial goal G0. Due to lazy evaluation, the parameters tn and the result t
will appear in the most evaluated form demanded by the topmost computation.
When these values are functions, they are represented in terms of partial appli-
cations of top-level function names. This is satisfactory under the assumption
that no local function definitions are allowed in programs, as it happens in T OY .

We build our CT s as abbreviated proof trees w.r.t. a logically sound inference
system for deriving acas. For this reason, our CT s are such that the validity
of the aca at each node follows from the validity of the acas at their children,
under the assumption that the function definition relating the parent node to
the children nodes is complete w.r.t. the intended interpretation of the program.
Any CT whose root aca is invalid must include at least one buggy node labeled
with an invalid aca and whose children are all labeled with valid acas. Each
buggy node N is related to some particular function f whose program rules are
responsible for the computation of the aca at N from the acas at N ’s children.
Therefore, the program rules for f can be diagnosed as incomplete. The search
for a buggy node can be implemented with the help of an external oracle who
has a reliable declarative knowledge of the valid acas w.r.t. the intended program
interpretation. Since the oracle is usually the programmer, she can even experi-
ment with different choices of the intended interpretation in order to obtain
different diagnosis of possibly incomplete functions.

Fig. 1. CT for the declarative diagnosis of missing answers

A CT corresponding to the goal GfD for program PfD (with the third program
rule for function fDiff omitted) is displayed in Fig. 1. More on its structure and
construction will be explained in Section 3. In this case, the programmer will
judge the root aca as invalid because she did not expect finite failure. Moreover,
from her knowledge of the intended interpretation, she will decide to consider
the acas for the functions gen, even and (//) as valid. However, the aca fDiff
(2:2:1:G) → F2 ⇒ (F2 �→ ⊥) asserts that the undefined value ⊥ is the only
possible result for the function call fDiff (2:2:1:G), while the user expects
also the result 2. Therefore, the user will judge this aca as invalid. The node
where it sits (enclosed within a double box in Fig. 1) has no children and thus

310 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

becomes buggy, leading to the diagnosis of fDiff as incomplete. This particular
incompleteness symptom could be mended by placing the third rule for fDiff
within the program.

3 Declarative Diagnosis of Missing Answers

As explained in the previous sections, the declarative diagnosis method proposed
in this paper relies on building CT s as abbreviated proof trees w.r.t. a logically
sound inference system for deriving acas. In this section, we present such an
inference system, whose negative proof trees represent the deduction of acas
from the negative theory P− associated to a given CFLP (D)-program P . We
also present results ensuring the logical correctness of the declarative diagnosis
method whose CT s are abbreviated representations of negative proof trees.

3.1 Standardized Programs and Negative Theories

Let P be a CFLP (D)-program. Its associated Negative Theory P− is obtained in
two steps. First, each program rule f tn → r ⇐ Δ is replaced by a standardized
form f Xn → Y ⇐ R̂, where Xn, Y are new variables, R̂ = ∃U. R with U =
var(R) \ {Xn, Y }, and the condition R is X1 → t1, . . . , Xn → tn, Δ, r → Y .
Next, P− is built by taking one axiom (f)−P of the form ∀Xn, Y. (f Xn → Y

⇒ (
∨

i∈I R̂i) ∨ (⊥ → Y)) for each function symbol f whose standardized pro-
gram rules are {f Xn → Y ⇐ R̂i}i∈I . By convention, we may use the notation
Df for the disjunction (

∨
i∈I R̂i) ∨ (⊥ → Y), and we may leave the universal

quantification of the variables Xn, Y implicit. Intuitively, the axiom (f)−P says
that any result computed for f must be obtained by means of some of the rules
for f in the program. The last alternative (⊥ → Y) within Df says that Y is
bound to the undefined result ⊥ in case that no program rule for f succeeds to
compute a more defined result. For example, let PfD be the CFLP (H)-program
given in Section 2, with the third program rule for fDiff omitted. Then P−

fD
includes (among others) the following axiom for the function symbol fDiff:

(fDiff)−PfD
: ∀L, F. (fDiff L → F ⇒

∃X. (L → [X] ∧ X → F) ∨
∃X, Y, Zs. (L → (X : Y : Zs) ∧ X /= Y ∧ X // fDiff (Y : Zs) → F) ∨
(⊥ → F))

Interpretations I are formally defined in [20]. Each interpretation represents a
certain behavior of the program defined functions. We write I ��D ftn → t to
indicate that the statement ftn → t is valid in I. Here, f is a program defined
function, tn stand for possibly partially evaluated arguments, and t stands for a
possibly partially evaluated result. Knowing the valid assertions I ��D ftn → t
suffices for defining the solution set SolI(G) whose elements are all the valua-
tions (i.e., substitutions of domain values for variables) that satisfy the goal G
w.r.t. I. We will use similar notations for other solution sets in the rest of the

Declarative Diagnosis of Missing Answers in CFLP 311

paper, writing SolD instead of SolI whenever the solutions do not depend on
the interpretation I of program defined functions. The following definition helps
to understand the semantics of missing answers:

Definition 1 (Interpretation-Dependent Semantics). Let P a CFLP (D)-
program and I an interpretation over D.

1. I is a model of P− iff every axiom (f)−P : (f Xn → Y ⇒ Df) ∈ P− satis-
fies SolI(f Xn → Y) ⊆ SolI(Df). When this inclusion holds, we say that
(f)−P is valid in I, or also that f ’s definition as given in P is complete
w.r.t. I.

2. The aca G ⇒
∨

i∈I Ŝi is a logical consequence of P− iff SolI(G) ⊆
⋃

i∈I

SolD(Ŝi) for any model I of P−. When this happens, we also say that the
disjunction of answers

∨
i∈I Ŝi is complete for G w.r.t. P.

3.2 Negative Proof Trees for Answer Collection Assertions

The declarative debugging of missing answers presupposes an intended interpre-
tation of the program, starts with the observation of an incompleteness symptom
and ends with an incompleteness diagnosis. A more precise definition of this de-
bugging scenario is as follows:

Definition 2 (Debugging Scenario). For any given CFLP (D)-program P:

1. The intended interpretation is some interpretation IP over D which
represents the behavior of the functions defined in P as expected by the pro-
grammer.

2. An incompleteness symptom occurs if the goal solving system computes
finitely many solved goals {Ŝi}i∈I as answers for an admissible initial goal
G, and the programmer judges that SolIP (G) �

⋃
i∈I SolD(Ŝi), meaning

that the aca G ⇒
∨

i∈I Ŝi is not valid in the intended interpretation IP , so
that some expected answers are missing.

3. An incompleteness diagnosis is given by pointing to some defined function
symbol f such that the axiom (f)−P for f in P− is not valid in IP , which
means SolIP (f Xn → Y) �⊆ SolIP (Df), showing that f ’s definition as given
in P is incomplete w.r.t. IP .

Some concrete debugging scenarios have been discussed in Section 2 and [9].
Assume now that an incompleteness symptom has been observed by the pro-
grammer. Since the goal solving system has computed the disjunction of answers
D =

∨
i∈I Ŝi, the aca G ⇒ D asserting that the computed answers cover all

the solutions of G should be derivable from P−. The Constraint Negative Proof
Calculus CNPC(D) consisting of the inference rules displayed in Fig. 2 has been
designed with the aim of enabling logical proofs P− �CNPC(D) G ⇒ D of acas.
We use a special operator & in order to express the result of attaching to a
given goal G a solved goal Ŝ′ resulting from a previous computation, so that
computation can continue from the new goal G & Ŝ′.

312 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

SF Solved Form
R � S ⇒ D

if SolD(S) ⊆ SolD(D).

CJ Conjunction

R1 � S ⇒ ∨
i∈I ∃Zi. Si . . . (R̂2 & Ŝi) ⇒ ∨

j∈Ji
∃Zij . Sij . . . (i ∈ I)

(R1 ∧ R2) � S ⇒ ∨
i∈I

∨
j∈Ji

∃Zi, Zij . Sij

if Zi /∈ var((R1 ∧ R2) � S), Zij /∈ var((R1 ∧ R2) � S) ∪ Zi, for all i ∈ I, j ∈ Ji.

TS Trivial Statement
ϕ : G ⇒ D

if ϕ is a trivial aca s.t. Sol(G) ⊆ SolD(D).

DC DeComposition em → tm � S ⇒ D

hem → htm � S ⇒ D
if hem is not a pattern.

IM IMitation em → Xm � (S ∧ hXm → X) ⇒ ∨
i∈I ∃Zi. Si

hem → X � S ⇒ ∨
i∈I ∃Xm, Zi. Si

if hem is not a pattern, X ∈ V, and Xm /∈ var(hem → X � S).

(AR)p Argument Reduction for Primitive Functions

en → Xn � (S ∧ pXn →! t) ⇒ ∨
i∈I ∃Zi. Si

pen →? t � S ⇒ (S ∧ ⊥ → t) ∨ (
∨

i∈I ∃Xn, ∃Zi. Si)

if p ∈ PF n, Xn /∈ var(pen →? t � S), and →? ≡ → (production) ∪ →! (constraint).
For instance, equality constraints e1 == e2 (resp., disequality constraints e1 /= e2).
are abbreviations of e1 == e2 →! true (resp., e1 == e2 →! false).

(AR)f Argument Reduction for Defined Functions

(en → Xn ∧ fXn → t) � S ⇒ ∨
i∈I ∃Zi. Si

fen → t � S ⇒ ∨
i∈I ∃Xn, Zi. Si

if f ∈ DF n, and Xn /∈ var(fen → t � S).

(en → Xn ∧ fXn → Y ∧ Y ak → t) � S ⇒ ∨
i∈I ∃Zi. Si

fenak → t � S ⇒ ∨
i∈I ∃Xn, Y, Zi. Si

if f ∈ DF n (k > 0), and Xn, Y /∈ var(fenak → t � S).

(DF)f Defined Function . . . Ri[Xn
→ tn, Y
→ t] � S ⇒ Di . . . (i ∈ I)

ftn → t � S ⇒ (S ∧ ⊥ → t) ∨ (
∨

i∈I Di)

if f ∈ DF n, Xn, Y /∈ var(ftn → t � S), and (fXn → Y ⇒ ∨
i∈I R̂i) ∈ P−.

Fig. 2. The Constraint Negative Proof Calculus CNPC(D)

Declarative Diagnosis of Missing Answers in CFLP 313

Formally, assuming G = ∃U. (R � (Π � σ)) and Ŝ′ = ∃U
′
. (Π ′ � σ′) a

solved goal such that U \ dom(σ′) ⊆ U
′
, σσ′ = σ′ and SolD(Π ′) ⊆ SolD(Πσ′),

the operation G & Ŝ′ is defined as ∃U
′
. (Rσ′ � (Π ′ � σ′)). The inference rule

CJ infers an aca for a goal with composed kernel (R1 ∧ R2) � S from acas for
goals with kernels of the form R1 � S and (R̂2 & Ŝi), respectively; while other
inferences deal with different kinds of atomic goal kernels.

Any CNPC(D)-derivation P− �CNPC(D) G ⇒ D can be depicted in the form
of a Negative Proof Tree over D (shortly, NPT) with acas at its nodes, such that
the aca at any node is inferred from the acas at its children using some CNPC(D)
inference rule. We say that a goal solving system for CFLP (D) is admissible iff
whenever finitely many solved goals {Ŝi}i∈I are computed as answers for an
admissible initial goal G, one has P− �CNPC(D) G ⇒

∨
i∈I Ŝi with some

witnessing NPT . The next theorem is intended to provide some plausibility to
the pragmatic assumption that actual CFLP systems such as Curry [16] or
T OY [21] are admissible goal solving systems.

Theorem 1 (Existence of Admissible Goal Solving Calculi). There is
an admissible Goal Solving Calculus GSC(D) which formalizes the goal solving
methods underlying actual CFLP systems such as Curry or T OY.

Proof. A more general result can be proved, namely: If (R̂ ∧ R′) & Ŝ ‖∼p
P,GSC(D)

D (with a partially developed search space of finite size p built using the program
P , a Goal Solving Calculus GSC(D) inspired in [19,11], and a certain selection
strategy that only selects atoms descendants of the part R) then P− �CNPC(D)

R̂ & Ŝ ⇒ D with some witnessing NPT . The proof proceeds by induction of
p, using an auxiliary lemma to deal with compound goals whose kernel is a
conjunction. Details are given in [10]. ��

We have also proved in [10] the following theorem, showing that any aca which
has been derived by means of a NPT is a logical consequence of the negative
theory associated to the corresponding program. This result will be used below
for proving the correctness of our diagnosis method.

Theorem 2 (Semantic Correctness of the CNPC(D) Calculus). Let G
⇒ D be any aca for a given CFLP (D)-program P. If P− �CNPC(D) G ⇒ D
then G ⇒ D is a logical consequence of P− in the sense of Definition 1.

3.3 Declarative Diagnosis of Missing Answers Using Negative Proof
Trees

We are now prepared to present a declarative diagnosis method for missing ans-
wers which is based on NPT s and leads to correct diagnosis for any admissible
goal solving system. First, we show that incompleteness symptoms are caused
by incomplete program rules. This is guaranteed by the following theorem:

314 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

Theorem 3 (Missing Answers are Caused by Incomplete Program
Rules). Assume that an incompleteness symptom has been observed for a given
CFLP (D)-program P as explained in Definition 2, with intended interpretation
IP , admissible initial goal G, and finite disjunction of computed answers D =∨

i∈I Ŝi. Assume also that the computation has been performed by an admissible
goal solving system. Then there exists some defined function symbol f such that
the axiom (f)−P for f in P− is not valid in IP , so that f ’s definition as given in
P is incomplete w.r.t. IP .

Proof. Because of the admissibility of the goal solving system, we can assume
P− �CNPC(D) G ⇒ D. Then the aca G ⇒ D is a logical consequence of P−

because of Theorem 2. By Definition 1, we conclude that SolI(G) ⊆ SolD(D)
holds for any model I of P−. However, we also know that SolIP (G) � SolD(D),
because the disjunction D of computed answers is an incompleteness symptom
w.r.t. IP . Therefore, we can conclude that IP is not a model of P−, and therefore
the completeness axiom (f)−P of some defined function symbol f must be invalid
in IP . ��

The previous theorem does not yet provide a practical method for finding an
incomplete function definition. As explained in Section 2, a declarative diagnosis
method is expected to find the incomplete function definition by inspecting a
CT . We propose to use abbreviated NPT s as CT s. Note that (DF)f is the
only inference rule in the CNPC(D) calculus that depends on the program,
and all the other inference rules are correct w.r.t. arbitrary interpretations. For
this reason, abbreviated proof trees will omit the inference steps related to the
CNPC(D) inference rules other than (DF)f . More precisely, given a NPT T
witnessing a CNPC(D) proof P− �CNPC(D) G ⇒ D, its associated Abbreviated
Negative Proof Tree (shortly, ANPT) AT is constructed as follows:

(1) The root of AT is the root of T .
(2) The children of any node N in AT are the closest descendants of N in T

corresponding to boxed acas introduced by (DF)f inference steps.

As already explained, declarative diagnosis methods search a given CT look-
ing for a buggy node whose result is unexpected but whose children’s results are
all expected. In our present setting, the CT s are ANPT s, the “results” attached
to nodes are acas, and a given node N is buggy iff the aca at N is invalid (i.e., it
represents an incomplete recollection of computed answers in the intended inter-
pretation IP) while the aca at each children node Ni is valid (i.e., it represents
a complete recollection of computed answers in the intended interpretation IP).

As a concrete example, Fig. 3 displays a NPT which can be used for the
diagnosis of missing answers in the example presented in Section 2. Buggy nodes
are highlighted by encircling the acas attached to them within double boxes.
The CT shown in Fig. 1 is the ANPT constructed from this NPT .

Our last result is a refinement of Theorem 3. It guarantees that declarative
diagnosis with ANPT s used as CT s leads to the correct detection of incomplete
program functions. A proof can be found in [10].

Declarative Diagnosis of Missing Answers in CFLP 315

Fig. 3. NPT for the declarative diagnosis of missing answers

Theorem 4 (ANPT s Lead to the Diagnosis of Incomplete Functions).
As in Theorem 3, assume that an incompleteness symptom has been observed for
a given CFLP (D)-program P as explained in Definition 2, with intended inter-
pretation IP , admissible initial goal G, and finite disjunction of answers D =∨

i∈I Ŝi, computed by an admissible goal solving system. Then P− �CNPC(D)

G ⇒ D, and the ANPT constructed from any NPT witnessing this derivation,
has some buggy node. Moreover, each such buggy node points to an axiom (f)−P
which is incomplete w.r.t. the user’s intended interpretation IP .

4 Implementation in the TOY System

In this section, we discuss the implementation in the T OY system of a tool
based on the debugging method presented in the previous sections. The current
prototype only supports the Herbrand constraint domain H, although the same
principles can be applied to other constraint domains D.

We summarize first the normal process followed by the T OY system when
compiling a source program P .toy and solving an initial goal G w.r.t. P . During

316 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

the compilation process the system translates a source program P .toy into a
Prolog program P .pl including a predicate for each function in P . For instance
the function even of our running example is transformed into a predicate

even(N,R,IC,OC):- ... code for even

where the variable N corresponds to the input parameter of the function, R to
the function result, and IC, OC represent, respectively, the input and output
constraint store. Moreover, each goal G of P is also translated into a Prolog goal
and solved w.r.t. P .pl by the underlying Prolog system. The result is a collection
of answers which are presented to the user in a certain sequence, as a result of
Prolog’s backtracking.

If the computation of answers for G finishes after having collected finitely
many answers, the user may decide that there are some missing answers (incom-
pleteness symptom, in the terminology of Definition 2) and type the command
/missing at the system prompt in order to initiate a debugging session. The
debugger proceeds carrying out the following steps:

1. The object program P .pl is transformed into a new Prolog program PT. pl.
The debugger can safely assume that P .pl already exists because the tool is
always initiated after some missing answer has been detected by the user.
The transformed program PT behaves almost identically to P , the only
difference being that it produces a suitable trace of the computation in a
text file. For instance here is a fragment of the code for the function even
of our running example in the transformed program:

1 % this clause wraps the original predicate

2 even(N,R,IC,OC):-

3 % display the input values for even

4 write(’ begin(’), write(’ even,’), writeq(N), write(’,’),

5 write(R), write(’, ’), writeq(IC), write(’).’), nl,

6 % evenBis corresponds to the original predicate for even

7 evenBis(N,R,IC,OC),

8 % display an output result

9 write(’ output(’), write(’ even,’), writeq(N), write(’,’),

10 write(R), write(’, ’), writeq(OC), write(’).’), nl.

11 % when all the possible outputs of the function have been produced

12 even(N,R,IC,OC):-

13 nl, write(’ end(even).’), nl,

14 !,

15 fail.

16 evenBis(N,R,IC,OC) :- ... original code for even

As the example shows, the code for each function now displays information
about the values of the arguments and the contents of the constraint store at
the moment of using any user defined function (lines 4-5). Then the predicate
corresponding to the original function, now renamed with the Bis suffix, is
called (line 7). After any successful function call the trace displays again

Declarative Diagnosis of Missing Answers in CFLP 317

the values of the arguments and result, which may have changed, and the
contents of the output constraint store (lines 9, 10). A second clause (lines
12-15) displays the value end when the function has exhausted its possible
output. The clause fails in order to ensure that the program flow is not
changed. The original code for each function is kept unaltered in the trans-
formed program except for the renaming (evenBis instead of even in the
example, line 16). This ensures that the program will behave equivalently to
the original program, except for the trace produced as a side-effect.

2. In order to obtain the trace file, the debugger repeats the computation of
all the answers for the goal G w.r.t. PT . After each successful computation
the debugger enforces a fail in order to trigger the backtracking mechanism
and produce the next solution for the goal. The program output is redirected
to a file, where the trace is stored.

3. The trace file is then analyzed by the CT builder module of the tool. The
result is the Computation Tree (an ANPT), which is displayed by a Java
graphical interface.

4. The tree can be navigated by the user either manually, providing information
about the validity of the acas contained in the tree, or using any of the
automatic strategies included in the tool which try to minimize the number of
nodes that the user must examine (see [29] for a description of some strategies
and their efficiency). The process ends when a buggy node is found and the
tool points to an incomplete function definition, as explained in Section 3,
as responsible for the missing answers. The current implementation of the
prototype is available at http://toy.sourceforge.net. The generation of
trace files works satisfactorily, while the CT builder module and the Java
graphical interface do still need more improvements.

Fig. 4 shows how the tool displays the CT corresponding to the debugging sce-
nario discussed in Section 2. The initial goal is not displayed, but the rest of the
CT corresponds to Fig. 1, whose construction as ANPT has been explained in
Section 3. When displaying an aca f tn → t � S ⇒

∨
i∈I Ŝi, the tool uses list

notation for representing the disjunction
∨

i∈I Ŝi and performs some simplifica-
tions: useless variable bindings within the stores S and Si are dropped, as in the
aca displayed as gen 2 1 -> A ==> [A = 2:1:_] in Fig. 4; and if t happens to
be a variable X , the case {X �→ ⊥} is omitted from the disjunction

∨
i∈I Ŝi, so

that the user must interpret the aca as collecting the possible results for X other
than the undefined value ⊥. The tool also displays the underscore symbol _ at
some places. Within any aca, the occurrences of _ at the right hand side of the
implication ⇒ must be understood as different existentially quantified variables,
while each occurrence of _ at the left hand side of ⇒ must be understood as ⊥.
For instance, 1 // _ -> A ==> [A = 1] is the aca 1 // ⊥ → A ⇒ {A �→ 1}
as displayed by the tool. Understanding the occurrences of _ at the left hand
side of ⇒ as different universally quantified variables would be incorrect. For
instance, the aca 1 // ⊥ → A ⇒ {A �→ 1} is valid w.r.t. the intended inter-
pretation IPfD of PfD, while the statement ∀X. (1 // X → A ⇒ {A �→ 1})
has a different meaning and is not valid in IPfD .

318 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

Fig. 4. Snapshots of the prototype

In the debugging session shown in Fig. 4 the user has selected the Divide &
Query strategy [29] in order to find a buggy node. The lower part of the left-
hand side snapshot shows the first question asked by the tool after selecting this
strategy, namely the aca fDiff 1:2:2:1: -> A ==> [A=1]. According to her
knowledge of IPfD the user marks this aca as invalid. The strategy now prunes
the CT keeping only the subtree rooted by the invalid aca at the previous step
(every CT with an invalid root must contain at least one buggy node). The se-
cond question, which can be seen at the right-hand side snapshot, asks about the
validity of the aca fDiff 2:2:1: -> A ==> [] (which in fact represents fDiff
2:2:1:⊥ → A ⇒ {A �→ ⊥}, as explained above). Again, her knowledge of IPfD
leads the user to expect that fDiff 2:2:1:⊥ can return some defined result, and
the aca is marked as invalid. After this question the debugger points out at fDiff
as an incomplete function, and the debugging session ends. Regarding the effi-
ciency of this debugging method our preliminary experimental results show that:

1. Producing the transformed PT. pl from P .pl is proportional in time to the
number of functions of the program, and does require an insignificant amount
of system memory since each predicate is transformed separately.

2. The computation of the goal w.r.t. PT. pl requires almost the same system
resources as w.r.t. P .pl because writing the trace causes no significant over-
head in our experiments.

3. Producing the CT from the trace is not straightforward and requires several
traverses of the trace. Although more time-consuming due to the algorithmic
difficulty, this process only keeps portions of the trace in memory at each
moment.

4. The most inefficient phase in our current implementation is the graphical
interface. Although it would be possible to keep in memory only the por-
tion of the tree displayed at each moment, our graphical interface loads the
whole CT in main memory. We plan to improve this limitation in the future.
However the current prototype can cope with CT s containing thousands of
nodes, which is enough for medium size computations.

5. As usual in declarative debugging, the efficiency of the tool depends on the
computation tree size, which in turn usually depends on the size of the data
structures required and not on the program size.

Declarative Diagnosis of Missing Answers in CFLP 319

A different issue is the difficulty of answering the questions by the user. Indeed in
complicated programs involving constraints the acas can be large and intricate,
as it is also the case with other debugging tools for CLP languages. Neverthe-
less, our prototype works reasonably in cases where the goal’s search space is
relatively small, and we believe that working with such goals can be useful for
detecting many programming bugs in practice. Techniques for simplifying CT s
should be worked out in future improvements of the prototype. For instance,
asking the user for a concrete missing instance of the initial goal and starting a
diagnosis session for the instantiated goal might be helpful.

5 Conclusions and Future Work

We have presented a novel method for the declarative diagnosis of missing com-
puted answers in CFLP (D), a declarative programming scheme which combines
the expressivity of lazy FP and CLP languages. The method relies on Com-
putation Trees (CT s) whose nodes are labeled with answer collection assertions
(acas). As in declarative diagnosis for FP languages, the values displayed at
acas are shown in the most evaluated form demanded by the topmost compu-
tation. On the other hand, and following the CLP tradition, we have shown
that our CT s are abbreviated proof trees in a suitable inference system, the
so-called constraint negative proof calculus. Thanks to this fact, we can prove
the correctness of our diagnosis method for any admissible goal solving system
whose recollection of computed answers can be represented by means of a proof
tree in the constraint negative proof calculus. As far as we know, no comparable
result was previously available for such an expressive framework as CFLP .

Intuitively, the notion of aca bears some loose relationship to programming
techniques related to answer recollection, as e.g., encapsulated search [2]. How-
ever, acas in our setting are not a programming technique. Rather, they serve
as logical statements whose falsity reveals incompleteness of computed answers
w.r.t. expected answers. In principle, one could also think of a kind of logical
statements somewhat similar to acas, but asserting the equality of the observed
and expected sets of computed answers for one and the same goal with a finite
search space. We have not developed this idea, which could support the declarati-
ve diagnosis of a third kind of unexpected results, namely incorrect answer sets
as done for Datalog [5]. In fact, we think that a separate diagnosis of wrong and
missing answers is pragmatically more convenient for users of CFLP languages.

On the practical side, our method can be applied to actual CFLP systems
such as Curry or T OY , leading to correct diagnosis under the pragmatic as-
sumption that they behave as admissible goal solving systems. This assumption
is plausible in so far as the systems are based on formal goal solving procedures
that can be argued to be admissible. A prototype debugger under development is
available, which implements the method in T OY . Although our implementation
is based on the ad-hoc trace generated by the transformed program PT , we think
that it could be possible to obtain the CT s from the redex trail for functional-logic

320 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

programming described in [3]. This would allow reasoning about the correct-
ness of the implementation by using the declarative semantics supporting this
structure.

Some important pragmatic problems well known for declarative diagnosis tools
in FP and CLP languages also arise in our context: both the CT s and the acas
at their nodes may be very big in general, causing computation overhead and
difficulties for the user in answering the questions posed by the debugging tool.
In spite of these difficulties, the prototype works reasonably in cases where the
goal’s search space is relatively small, and we believe that working with such goals
can be useful for detecting many programming bugs in practice. Techniques for
simplifying CT s should be worked out in future improvements of the prototype.

Acknowledgments

The authors are grateful to the referees of previous versions of this paper for
their constructive comments and suggestions.

References

1. Boye, J., Drabent, W., Maluszynski, J.: Declarative diagnosis of contraint pro-
grams: An assertion-based approach. In: Automated and Algorithmic Debugging,
pp. 123–140 (1997)

2. Brassel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming (2004)

3. Brassel, B., Hanus, M., Huch, F., Vidal, G.: A semantics for tracing declarative
multi-paradigm programs. In: PPDP 2004, pp. 179–190. ACM Press, New York
(2004)

4. Caballero, R.: A declarative debugger of incorrect answers for constraint functional-
logic programs. In: WCFLP 2005, pp. 8–13. ACM Press, New York (2005)

5. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A new proposal for debugging
datalog programs. In: WFLP 2007 (2007)

6. Caballero, R., Rodŕıguez-Artalejo, M.: A declarative debugging system for lazy
functional logic programs. Electr. Notes Theor. Comput. Sci. 64 (2002)

7. Rodŕıguez-Artalejo, M., Caballero, R.: DDT : A declarative debugging tool for
functional-logic languages. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004.
LNCS, vol. 2998, pp. 70–84. Springer, Heidelberg (2004)

8. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: Declarative diagno-
sis of wrong answers in constraint functional-logic programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 421–422. Springer, Hei-
delberg (2006)

9. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: Declarative debug-
ging of missing answers in constraint functional-logic programming. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 425–427. Springer, Heidelberg
(2007)

10. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: Algorithmic debug-
ging of missing answers in constraint functional-logic programming. Technical Re-
port DSIC 2/08, Universidad Complutense de Madrid (2008),
http://gpd.sip.ucm.es/papers.html

http://gpd.sip.ucm.es/papers.html

Declarative Diagnosis of Missing Answers in CFLP 321

11. del Vado-Vı́rseda, R.: Declarative constraint programming with definitional trees.
In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 184–199. Springer,
Heidelberg (2005)

12. Estévez, S., del Vado-Vı́rseda, R.: Designing an efficient computation strategy in
CFLP(FD) using definitional trees. In: WCFLP 2005, pp. 23–31. ACM Press, New
York (2005)

13. Fernández, A.J., Hortalá-González, M.T., Sáenz-Pérez, F., del Vado-Vı́rseda, R.:
Constraint functional logic programming over finite domains. Theory and Practice
of Logic Programming 7(5), 537–582 (2007)

14. Ferrand, G.: Error diagnosis in logic programming, an adaption of E. Y. Shapiro’s
method. J. Log. Program. 4(3), 177–198 (1987)

15. Ferrand, G., Lesaint, W., Tessier, A.: Towards declarative diagnosis of constraint
programs over finite domains. ArXiv Computer Science e-prints (2003)

16. Hanus, M.: Curry: An integrated functional logic language (version 0.8.2 of march
28, 2006) (2006), http://www.informatik.uni-kiel.de/∼curry

17. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Abstract verification
and debugging of constraint logic programs. In: O’Sullivan, B. (ed.) CologNet 2002.
LNCS (LNAI), vol. 2627, pp. 1–14. Springer, Heidelberg (2003)

18. Lloyd, J.W.: Declarative error diagnosis. New Gen. Comput. 5(2), 133–154 (1987)
19. López-Fraguas, F.J., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: A lazy narrow-

ing calculus for declarative constraint programming. In: PPDP 2004, pp. 43–54.
ACM Press, New York (2004)

20. López-Fraguas, F.J., Rodŕıguez-Artalejo, M., Vado-Vı́rseda, R.d.: A new generic
scheme for functional logic programming with constraints. Higher-Order and Sym-
bolic Computation 20(1-2), 73–122 (2007)

21. López-Fraguas, F.J., Sánchez-Hernández, J.: T OY : A multiparadigm declarative
system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999)

22. Naish, L.: A declarative debugging scheme. Journal of Functional and Logic Pro-
gramming 1997(3) (1997)

23. Naish, L., Barbour, T.: A declarative debugger for a logical-functional language.
DSTO General Document 5(2), 91–99 (1995)

24. Nilsson, H.: How to look busy while being as lazy as ever: the implementation of
a lazy functional debugger. J. Funct. Program. 11(6), 629–671 (2001)

25. Nilsson, H., Sparud, J.: The evaluation dependence tree as a basis for lazy func-
tional debugging. Autom. Softw. Eng. 4(2), 121–150 (1997)

26. B. Pope. A Declarative Debugger for Haskell. PhD thesis, Department of Computer
Science and Software Engineering, University of Melbourne (2006)

27. Pope, B., Naish, L.: Practical aspects of declarative debugging in haskell 98. In:
PPDP 2003, pp. 230–240. ACM Press, New York (2003)

28. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge, MA, USA
(1983)

29. Silva, J.: A comparative study of algorithmic debugging strategies. In: Puebla, G.
(ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 143–159. Springer, Heidelberg (2007)

30. Tessier, A., Ferrand, G.: Declarative diagnosis in the CLP scheme. In: Deransart,
P., Ma�luszyński, J. (eds.) DiSCiPl 1999. LNCS, vol. 1870, pp. 151–174. Springer,
Heidelberg (2000)

http://www.informatik.uni-kiel.de/~curry

EasyCheck — Test Data for Free�

Jan Christiansen and Sebastian Fischer

Department of Computing Science, University of Kiel, Germany
{jac,sebf}@informatik.uni-kiel.de

Abstract. We present a lightweight, automated tool for specification-
based testing of declarative programs written in the functional logic pro-
gramming language Curry and emphasize the usefulness of logic features
in its implementation and use. Free variables, nondeterminism and en-
capsulated search turn out to be elegant and powerful means to express
test-data generation.

Keywords: Testing, Nondeterminism, Encapsulated Search, Curry.

1 Introduction

Automatic test tools have to generate values of a certain type. For example, to
test the function reverse which reverses a list we have to generate a variety of
lists of values of some type.

We present the implementation of an automatic test tool for the functional
logic programming language Curry. Functional logic languages like Curry extend
the functional programming paradigm with nondeterministic operations and free
variables. In [1] it was shown that a free variable can be seen as a nondetermin-
istic generator that yields all values of its type. We argue that this result is not
only of theoretical interest. We present a practical application of this new view
on free variables. Instead of defining a test-case generator for lists, we can use a
free variable of an appropriate list type. Moreover, the notion of nondeterminism
greatly simplifies the implementation of custom generators.

In Curry, nondeterminism is introduced by operations with overlapping left
hand sides. For example, the operation bool is nondeterministic because its left
hand sides trivially overlap – they are identical. It is semantically equivalent to
a free variable of type Bool.

bool = False

bool = True

The operation bool nondeterministically evaluates to False or True. The opera-
tion bList is semantically equivalent to a free variable of type [Bool].

bList = []

bList = bool : bList

� Partially supported by the German Research Council (DFG) grant Ha 2457/5-2.

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 322–336, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

EasyCheck — Test Data for Free 323

It yields an empty list or a list with a boolean head and a bList as tail. Therefore,
bList nondeterministically yields all values of type [Bool].

The above definitions are superfluous, because they evaluate to every value
of their type and we can replace them by free variables. However, we can apply
a similar technique to define custom generators that evaluate only to a subset of
all possible values. For example, if we do not want to check reverse for empty
lists, we can define an operation that nondeterministically yields all nonempty
lists of type [Bool].

neBList = bool : bList

We present an automatic test tool that uses nondeterministic operations for the
generation of test data.

– We show that the generation of test data is already included in the concepts
of functional logic programming. Therefore, the programmer does not have
to learn a new syntax and the syntax for test data generation is very simple.

– We separate the generation of test data and its enumeration. Test data gen-
erators are nondeterministic operations. The nondeterminism is encapsu-
lated [2] by an operation that yields a tree which contains all possible values.
We present a new traversal strategy for such trees that serves well for the
purpose of test data generation (Section 4). In contrast to other approaches,
this enables us to ensure that every value is enumerated only once and that
every value is eventually enumerated. The separation between generation
and enumeration of test data allows a clear and flexible implementation of
automatic testing.

– We extend the interface of test tools for functional languages with additional
operations to specify properties of nondeterministic operations (Section 3).

2 Curry

Curry is a functional logic programming language whose syntax is similar to the
syntax of the functional programming language Haskell [3]. In the following, we
assume that the reader is familiar with the syntax of Haskell and only explain
Curry specifics in detail. Apart from functional features (algebraic datatypes,
higher-order functions, lazy evaluation), Curry provides the essential features of
logic programming, viz., nondeterminism and free variables. Because of nonde-
terminism we use the term operation in the context of Curry instead of func-
tion. Free variables are introduced by the keyword free and nondeterminism by
overlapping left hand sides. Curry does not follow a top-down strategy but eval-
uates every matching rule of an operation. For example, the binary operation
(?) :: a -> a -> a nondeterministically yields one of its arguments.

x ? _ = x

_ ? x = x

In Curry you can encapsulate a nondeterministic value and get a deterministic
tree that contains all possible values. In the following, we will use the term search

324 J. Christiansen and S. Fischer

[]

 [] (:)

 False True

[False]

 [] (:)

[True]

 [] (:)

 False True

[False,False]

 [] (:)

[False,True]

 [] (:)

 False True

[True,False]

 [] (:)

[True,True]

 [] (:)

Fig. 1. Search tree for a free variable of type [Bool]

tree when we talk about this tree structure. Note that this is not a search tree
in the sense of an AVL or a Red Black tree. A search tree in our sense denotes
a value of the following datatype.1

data SearchTree a = Value a | Or [SearchTree a]

The Curry system KiCS [4,5] provides a primitive encapsulating operation
searchTree :: a -> SearchTree a that takes a possibly nondeterministic value
and yields the corresponding search tree. Encapsulating nondeterminism is still a
topic of ongoing research. Nevertheless, all Curry implementations provide some
kind of encapsulated search. The search tree for a deterministic value is a single
Value leaf.

> searchTree True

Value True

Nondeterministic choices are reflected by Or nodes in the search tree.

> searchTree (False ? True ? False)

Or [Value False,Or [Value True,Value False]]

If we apply searchTree to bList or a free variable of type [Bool], we obtain an
infinite search tree because there are infinitely many values of type [Bool]. How-
ever, due to lazy evaluation, only those parts of the search tree are generated
that are demanded by the surrounding computation. Therefore it is possible to
guide the search by user defined traversal operations as the one presented in
Section 4. Figure 1 visualizes the first six levels of the search tree that corre-
sponds to a free variable of type [Bool]. Each inner node represents a nonde-
terministic choice for a constructor and its outgoing edges are labeled with the
chosen constructor. The leaves of the tree are labeled with the corresponding
lists of booleans.

1 We do not consider failure throughout this paper, which could be expressed as Or [].

EasyCheck — Test Data for Free 325

3 Using EasyCheck

The interface of EasyCheck is similar to the interface of QuickCheck [6] or
G∀st [7]. We provide a combinator property :: Bool -> Property that is
satisfied if its argument deterministically evaluates to True. The deterministic
equality operator (-=-) :: a -> a -> Property is satisfied if its arguments are
deterministically evaluated to the same value.

However, EasyCheck is a test tool for a functional logic language and has spe-
cial combinators to deal with nondeterminism. In this section we present the use
of additional combinators to specify properties of nondeterministic operations.

We cannot use (-=-) to specify properties of nondeterministic operations
because (-=-) demands its arguments to be deterministic. It would be ques-
tionable what a property like (0?1) -=- 1 should mean and whether it should
be equivalent to 1 -=- (0?1). We provide different combinators for nondetermin-
istic operations that allow to address multiple values of an expression explicitly:
(~>), (<~), (<~>) :: a -> a -> Property.

– The combinator (~>) demands that its left argument evaluates to every value
of its right argument. The set of results of the left argument must be a
superset of the set of results of the right argument.

– The combinator (<~) is dual to (~>) and demands that the set of results of
its left argument is a subset of the set of results of the right one.

– Finally, (<~>) is satisfied if the sets of results of its arguments are equal. Note
that (<~>) is not equivalent to (-=-) because the latter demands that the
sets of results of its arguments are singleton sets.

In order to demonstrate nondeterministic testing, we consider an operation that
inserts an element at an arbitrary position in a list.

insert :: a -> [a] -> [a]

insert x xs = x : xs

insert x (y:ys) = y : insert x ys

The following property states that insert should insert the given element (at
least) at the first and last position of the given list.

insertAsFirstOrLast :: Int -> [Int] -> Property

insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

To check a polymorphic property we have to annotate a type to determine pos-
sible test cases. For example insertAsFirstOrLast is tested for integers and lists
of integers. We can use easyCheck2 to verify that insert satisfies this property
for the first 1,000 generated test cases.

> easyCheck2 insertAsFirstOrLast

OK, passed 1000 tests.

We provide operations easyCheckn to test properties of arity n for every reason-
able n. As Curry does not support type classes, we cannot provide an operation
easyCheck that handles properties of arbitrary arities.

326 J. Christiansen and S. Fischer

We can employ insert to define a nondeterministic operation perm that com-
putes all permutations of a given list.

perm :: [a] -> [a]

perm = foldr insert []

In order to test perm, we use one of the nondeterministic counterparts of the op-
eration property, namely always, eventually :: Bool -> Property. These oper-
ations do not demand their arguments to be deterministic and are satisfied if
all and any of the nondeterministic results of the argument are satisfied respec-
tively. Assuming a predicate sorted :: [Int] -> Bool we can define a test for
perm as follows.

permIsEventuallySorted :: [Int] -> Property

permIsEventuallySorted xs = eventually (sorted (perm xs))

> easyCheck1 permIsEventuallySorted

OK, passed 1000 tests.

The presented combinators are a relatively straightforward generalization of
those found in QuickCheck for nondeterministic operations. We did not present
all available combinators in this section. We introduce additional combinators
in later sections when we use them.

4 Enumerating Test Cases

The primitive operation searchTree :: a -> SearchTree a encapsulates nonde-
terminism. It takes a possibly nondeterministic expression as argument and
deterministically yields a search tree that contains all possible values of this
expression. The standard libraries of Curry provide two operations to traverse a
search tree and enumerate its values in depth- or breadth-first order. However,
for test-case generation, we need a complete, advancing and balanced enumera-
tion.

– We call an enumeration complete if every value is eventually enumerated.
This property allows us to prove properties that only involve datatypes with
finitely many values. Moreover, it implies that any node of an infinite search
tree is reached in finite time.

– Furthermore, it is desirable to obtain reasonably large test cases early in
order to avoid numerous trivial test cases. Therefore we want to visit the
first node of the n-th level of a search tree after p(n) other nodes where p is
a polynomial. We call an enumeration with this property advancing.

– We call an enumeration balanced if the enumerated values are independent
of the order of child trees in branch nodes. Balance is important in order to
obtain diverse test cases.

Neither depth- nor breadth-first search fulfills all properties. Depth-first search
is advancing2 but incomplete and unbalanced. Breadth-first search is complete
2 Not always, however, because it is incomplete.

EasyCheck — Test Data for Free 327

and almost balanced but not advancing because it generates a lot of small values
before larger ones. Therefore, we present a new search tree traversal that is better
suited for test-case generation.

4.1 Level Diagonalization

The following operation yields the list of levels of a search forest.

levels :: [SearchTree a] -> [[SearchTree a]]

levels ts | null ts = []

| otherwise = ts : levels [u | Or us <- ts, u <- us]

Note that not only values but all nodes of the forest are enumerated. If we would
only enumerate leaves, we might need to process large sequences of inner nodes
without being able to yield a node. As a consequence, large parts of levels would
be visited what we aim to avoid due to performance reasons. By yielding also
the inner nodes of the tree, we are able to process all levels incrementally. The
operation levelDiag merges the different levels and extracts the values from the
resulting enumeration.

levelDiag :: SearchTree a -> [a]

levelDiag t = [x | Value x <- diagonal (levels [t])]

We do not simply concatenate the levels like in breadth-first search but use a list
diagonalization operation reminiscent to the diagonalizing list comprehensions
of Miranda [8]. The operation diagonal takes a list of lists and yields a list that
contains all elements of the inner lists in a diagonally interleaved order.

diagonal :: [[a]] -> [a]

diagonal = concat . foldr diags []

where diags [] ys = ys

diags (x:xs) ys = [x] : merge xs ys

merge [] ys = ys

merge xs@(_:_) [] = map (:[]) xs

merge (x:xs) (y:ys) = (x:y) : merge xs ys

We can use diagonal to merge an infinite list of infinite lists:

> take 10 (diagonal [[(i,j) | j <- [1..]] | i <- [1..]])

[(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)]

You can think of the list of lists as a matrix. Note that the first element of the
nth inner list is returned as (n(n + 1)/2)th element of the result (or earlier).
This means that levelDiag visits the first node of level n after visiting only
O(n2) other nodes (compared to O(2n) for breadth-first search and O(n) for
depth-first search). Figure 2 shows part of the search tree that represents lists
of booleans. The first 100 nodes that are visited by levelDiag are highlighted.
Thanks to lazy evaluation, only a small part of the tree is computed. Observe
that all values of lower levels are enumerated and, therefore, boundary cases
are covered completely. Moreover, large values are enumerated reasonably early,

328 J. Christiansen and S. Fischer

Fig. 2. Level diagonalization for [Bool] values

i.e., levelDiag is advancing. It is also complete since every value is eventually
enumerated. However, it is not balanced because it prefers left branches. Also,
most of the visited nodes are in the left part of the tree.

4.2 Randomization

We employ shuffle :: Int -> [a] -> [a] in order to choose every branch with
equal probability. It takes a random seed and yields a random permutation of
its argument. We use this operation to shuffle search trees.

shuffleTree :: Int -> SearchTree a -> SearchTree a

shuffleTree _ (Value x) = Value x

shuffleTree rnd (Or ts) = Or (shuffle r (zipWith shuffleTree rs ts))

where r:rs = split rnd

The function split computes an infinite list of uncorrelated random seeds from
a given random seed. We can combine shuffleTree and levelDiag in order to
obtain a complete, advancing and balanced search tree traversal. If we start
the search with a fixed random seed, we obtain reproducible test cases. This is
important because it is difficult to track down a bug if the same property fails in
one execution and succeeds in another. Instead of shuffling only the children of
nodes we could as well shuffle whole levels. This would give a good distribution
but result in unacceptable performance since it causes the evaluation of large
parts of the search tree.

Neither left nor right branches are preferred by randomized level diagonaliza-
tion. But still large parts of the visited nodes are in the same part of the tree.
This is desirable from a performance point of view because unvisited parts need
not be computed. However, there is also an undesirable consequence: the larger
the computed values are the more they resemble each other. QuickCheck does
not show this behaviour because its test cases are independent of each other.

EasyCheck — Test Data for Free 329

Fig. 3. Combined randomized level diagonalization for [Bool] values

But as a consequence the probability for enumerating a small value twice is
very high.

Finding an efficient enumeration scheme that is complete, balanced and gen-
erates sufficiently different large values early deserves future work. In a first
attempt, we apply randomized level diagonalization to different subtrees of the
initial tree and combine the individual results. Figure 3 visualizes the effect of
combining two randomized level diagonalizations.

5 Case Study

In this section we demonstrate how to test a heap implementation with Easy-
Check. A heap is a tree that satisfies the heap property: the sequence of labels
along any path from the root to a leaf must be non-decreasing. We want to
evaluate test-case distribution for a complex datatype with multiple recursive
components. Therefore, we use a custom datatype for natural numbers in binary
notation as heap entries (cf. [9]).

data Heap = Empty | Fork Nat [Heap]

data Nat = One | O Nat | I Nat

The heap implementation provides operations empty :: Heap to create an empty
heap, insert :: Nat -> Heap -> Heap to add an element to a heap and
splitMin :: Heap -> (Nat,Heap) to get the minimum of a nonempty heap and
the heap without the minimum. The property minIsLeqInserted states that the
minimum of a heap after inserting an element is less than or equal to the new
entry.

minIsLeqInserted :: Nat -> Heap -> Property

minIsLeqInserted v h = property (m<=v)

where (m,_) = splitMin (insert v h)

330 J. Christiansen and S. Fischer

0 1 2 3 4 5
0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

100

200

300

400

500

600

700

heapVar

heapAbs

heapGen

Fig. 4. Depth and size of generated Heap values

EasyCheck reports that this property is satisfied for 1000 test cases. The
test uses a free variable to generate heaps. Because the test cases are
generated by a free variable they do not necessarily satisfy the heap
property. To count the number of valid heaps we employ the operation
classify :: Bool -> String -> Property -> Property and a predicate valid on
heaps. 505 of the first 1,000 heaps generated by a free variable are valid. We
could use the operator (==>) :: Bool -> Property -> Property to reject invalid
heaps like it is often done in QuickCheck. In this case all test cases – valid and
invalid ones – are generated. This is insufficient if the percentage of valid test
cases is small.

5.1 Generating Only Valid Heaps

In this subsection we discuss approaches to generate only valid heaps. In Sub-
section 5.2, we compare the distribution of test data with similar QuickCheck
generators.

– We constrain a free variable by the predicate valid,
– we employ the abstract heap constructors empty and insert, and
– we explicitly generate an adequate subset of valid heaps.

For each of these approaches we measure the depth and the size of the generated
heaps, i.e., the length of the longest path from the root to a leaf and the number of
entries, respectively. The results of these measurements are depicted in Figure 4.

We can define a generator for valid heaps by narrowing a free variable.

heapVar | valid h = h where h free

This is a very simple and elegant way to generate only valid heaps. The test
tool SparseCheck [10] employs the same idea, cf. Section 6 on related work.
This definition is more efficient compared to the approach using (==>). Thanks

EasyCheck — Test Data for Free 331

to laziness, invalid heaps are only generated as far as necessary to detect that
they are invalid. If we use (==>) all test cases are generated completely and
tested afterwards. Narrowing a free variable w.r.t. a predicate only generates
valid heaps. Figure 4 shows that the majority of test cases that are generated
by heapVar are small heaps. The probability that a larger heap that is generated
by a free variable is valid is very small. Therefore it is much more effective to
directly generate valid heaps. We can directly generate only valid heaps by using
the abstract heap constructors empty and insert.

heapAbs = empty

heapAbs = insert unknown heapAbs

With heapAbs the average depth and size of the generated heaps increase not-
icably. More than 200 heaps of depth and size 3 are generated in 1,000 trials
compared to none with heapVar.

Finally, we explicitly generate a subset of valid heaps, in order to further
improve test-data distribution.

heapGen = Empty

heapGen = fork One

fork n = Fork m (heapList m) where m = n + smallNat

heapList _ = []

heapList n = fork n : heapList n

smallNat = One ? O One ? I One ? O (O One) ? I (O One) ? O (I One)

The number that is passed to fork defines the minimum size of all entries of the
generated heap. That way, we assure that the generated heaps are valid. We also
restrict the entries of the generated heaps: the difference of a label at any node
and its children is at most 6. In our experiments, heapGen generates heaps up to
depth 5 with up to 13 entries in the first 1,000 test cases. This is a significant
improvement over the previously presented generators.

In order to evaluate the benefits of the presented search tree traversal, we
have enumerated 1,000 results of the custom generator heapGen in breadth-first
order. The largest heap of the first 1,000 results generated by breadth-first search
has 5 entries. With combined randomized level diagonalization, the largest heap
has 13 entries. The practical results documented in this section show that the
new search tree traversal is an improvement over existing ones in the context
of test-case generation. We have shown that EasyCheck serves well to generate
sufficiently complex test data of non-trivial recursive datatypes like Heap. The
generation of 1,000 heaps with the presented generators takes about one second
on average using KiCS [4,5] on a 2.2 GHz Apple MacBookTM.

5.2 Comparison with QuickCheck

Due to lack of space, we cannot provide an extensive comparison with all im-
portant test tools for declarative languages. Therefore, we restrict ourselves to

332 J. Christiansen and S. Fischer

0 1 2 3 4 5 6 7 8 9 10 >10
0

100

200

300

400

500

600

700

800

900
heapVar

heapAbs

heapGen

0 1 2 3 4 5 6 7 8 9 10 >10
0

100

200

300

400

500

600

700

800

900
heapVar

heapAbs

heapGen

Fig. 5. Depth and size of generated Heap values

QuickCheck – the most widely used test tool for Haskell – and only describe data
generators that resemble the ones presented before. QuickCheck provides addi-
tional combinators that allow to tune the distribution of test input. We want to
point out, that the search presented in this paper relieves the programmer from
the burden to manually adjust test-case distribution to some extent.

In QuickCheck we define data generators of type Gen a instead of nondeter-
ministic values of type a by using oneof :: [Gen a] -> Gen a. It takes a list of
generators and yields a generator where each of its arguments is chosen with
equal probability. Figure 5 shows the distribution of the depth and size of the
generated heaps for the three adapted generators. We have taken the average of
10 runs of QuickCheck.

The black bars represent the result for a generator that resembles a free vari-
able. We just enumerate the constructors employing oneof and use the implica-
tion operator (==>) to reject invalid heaps. 960 out of 1,000 test cases are empty
heaps. At first sight it seems easy to improve this. But if we use (==>) to prohibit
the generation of empty heaps only around 300 out of the first 10,000 test cases
are valid. Another way to improve this generator is by using the frequency op-
erator. This operator is similar to oneof but each list element is assigned with a
probability. Finding good probabilities is nontrivial. For example, we have faced
the problem of undesirably large test input leading to a significant slowdown or
even stack overflows. If we do not use (==>) only about 500 out of 1,000 heaps
are valid and about 25 are valid and not empty. This is a well-known deficiency
of QuickCheck also tackled by SparseCheck [10] with an approach similar to our
restricted free variable. The distribution measured with the QuickCheck genera-
tors heapAbs and heapGen is acceptable. The number of generated heaps decreases
with increasing depth and size but, nevertheless, larger heaps are generated.

The generation of test cases with QuickCheck is considerably faster than with
EasyCheck. One reason is that a complete search is more time and space con-
suming than an incomplete random search. Also, the Curry system KiCS is a

EasyCheck — Test Data for Free 333

prototype and not as mature as modern Haskell systems – especially w.r.t. per-
formance. Nevertheless, the run time of EasyCheck is acceptable, viz., a few
seconds also for complex test-input.

6 Related Work

There are four implementations of automated test tools in functional languages,
namely QuickCheck [6,11], SmallCheck [12] and SparseCheck [10] in Haskell and
G∀st [7] in Clean [13]. Besides these, there are a couple of implementations of
QuickCheck in other functional languages.

QuickCheck provides monadic combinators to define random test case gener-
ators in an elegant way. In order to test a function, the user has to define an
instance of the type class Arbitrary for each type used as test input. Functional
logic languages like Curry, already provide default generators for all datatypes,
viz., free variables. Moreover, custom generators are defined by nondeterministic
operations – no type class is necessary. With QuickCheck the user cannot ensure
that all values of a datatype are used during a test. Furthermore, the same test
data may be generated more than once. In EasyCheck, we employ a complete
enumeration scheme for generating test data and ensure that every value is enu-
merated at most once. Moreover, every value would be eventually enumerated,
if we would not abort the generation of test cases. In contrast to EasyCheck,
QuickCheck can be used to generate higher order functions as test cases. The
extension of EasyCheck to higher order values is future work.

The idea behind SmallCheck is that counter examples often consist of a small
number of constructors. Instead of testing randomly generated values, Small-
Check tests properties for all finitely many values up to some size. Size denotes
the number of constructors of a value. The size of the test cases is increased in
the testing process. That is, we get the same results as SmallCheck for Easy-
Check by using an iterative deepening or breadth-first traversal for the search
trees. This demonstrates the power of the separation of test case generation and
enumeration.

The automatic test tool G∀st uses generic programming to provide test data
generators for all types. In contrast to QuickCheck, this relieves the user from
defining instances of type classes. If the user wants to define a custom generator
he has to employ the generic programming extension of Clean [14]. In our ap-
proach, no language extension is necessary from the point of view of a functional
logic programmer. Of course, we heavily use logic programming extensions built
into functional logic languages. An outstanding characteristics of G∀st is that
properties can be proven if there are only finitely many checks. However, G∀sts
enumeration scheme is not complete because left recursive datatypes lead to an
infinite loop. In EasyCheck, we can prove properties because of the complete
enumeration of test data. Moreover, the algorithm that generates test data is
independent from the algorithm that enumerates it. Therefore, we can apply
flexible enumeration schemes.

334 J. Christiansen and S. Fischer

The idea of SparseCheck is based on a work by Fredrik Lindblad [15]. He pro-
poses a system that uses narrowing to generate test cases that fulfil additional
requirements. The approach of QuickCheck, SmallCheck and G∀st is to generate
all values and discard the values that do not satisfy these requirements. If only a
small percentage of test cases fulfils the requirements this strategy fails. In Spar-
seCheck, values that fulfil the requirements are generated using narrowing im-
plemented in a logic programming library for Haskell [16]. This library provides
similar features like Curry but separates functional from logic definitions that
use special purpose combinators and operate on values of a special term type.

Recently, an approach to glass-box testing of Curry programs was presented
in [17]. Glass-box testing aims at a systematic coverage of tested code w.r.t. a
coverage criterion. The main difference between a black-box tool like EasyCheck
and a glass-box tool is that EasyCheck generates test input in advance and a
glass-box tool narrows test input during the execution of the tested function. An
advantage of the glass-box approach is that input that is not processed by the
program does not need to be generated. However, a glass-box approach is not
lightweight because it requires a program transformation or a modification of
the run-time system in order to monitor code coverage. Another disadvantage is
that nondeterminism introduced by the tested function cannot be distinguished
from the nondeterminism introduced by the test input. For example, a glass-box
test tool cannot detect test input that leads to a failure or multiple results of the
tested function. EasyCheck has combinators to deal with nondeterminism and,
therefore, also with failure. A glass-box tool is usually employed to generate unit
tests for deterministic operations.

The Curry implementation PAKCS [18] comes with CurryTest – a unit-test
tool for Curry. Unit tests specify test in- and output explicitly, while specification-
based tests in QuickCheck, G∀st and EasyCheck only specify properties and the
tool generates test data automatically. Thanks to the simplified form of test-data
generation, defining a unit test in EasyCheck is as elegant as in CurryTest.

Checking defined functions against a seperate specification by systematically
enumerating the arguments of the function can be seen as (bounded) model
checking. See [19] for recent work on this topic. Usually, model checking refers
to specifications of concurrent systems in temporal logic. XMC [20] is a model
checker based on logic programming.

7 Conclusions and Future Work

We have presented EasyCheck3 – a lightweight tool for automated, specification-
based testing of Curry programs. Compared to similar tools for purely functional
languages, we provide additional combinators for testing nondeterministic oper-
ations (Section 3).

Functional logic languages already include the concept of test-data generation.
Free variables provide default generators for free and the declaration of custom
generators is integrated in the programming paradigm via nondeterminism. It
3 Available at http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck

http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck

EasyCheck — Test Data for Free 335

does not require additional type classes nor language extensions like generic
programming. Logic programming features allow for a simple and elegant dec-
laration of test-data generators. In Section 5 we discussed different approaches
to defining custom test-case generators and compared them w.r.t. test-data dis-
tribution using a non-trivial datatype representing heap trees.

In EasyCheck, we separate test-case generation and enumeration, i.e., test-
data generators can be written without committing to a specific enumeration
scheme. Therefore, better enumeration schemes will improve test data distribu-
tion for existing generators. We present a new search tree traversal, viz., combined
randomized level diagonalization (Section 4), and show that it is better suited for
generating test cases than other traversals provided by Curry implementations.

Although this traversal turns out to be quite useful already, we plan to investi-
gate new traversals to improve the diversity of large test cases. Another direction
for future work is to examine time and space requirements of randomized level
diagonalization. Furthermore, we would like to investigate the distribution of
values generated by this traversal and to develop traversals with a similar dis-
tribution that do not rely on randomization.

References

1. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006)

2. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional logic
computations. In: EAPLS, vol. 6 (2004)

3. Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

4. Braßel, B., Huch, F.: Translating Curry to Haskell. In: Proc. of the ACM SIGPLAN
Workshop on Curry and Functional Logic Programming, pp. 60–65. ACM Press,
New York (2005)

5. Braßel, B., Huch, F.: The Kiel Curry System KiCS. In: Seipel, D., Hanus, M.,
eds.: Preproceedings of the 21st Workshop on (Constraint) Logic Programming,
215–223 Technical Report 434 (2007)

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices 35(9), 268–279 (2000)

7. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

8. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.
In: Proc. of a conference on Functional programming languages and computer
architecture, pp. 1–16. Springer, Heidelberg (1985)

9. Brassel, B., Fischer, S., Huch, F.: Declaring numbers (to be published, 2007)
10. Naylor, M.: A logic programming library for test-data generation (2007),

http://www-users.cs.york.ac.uk/∼mfn/sparsecheck/
11. Claessen, K., Hughes, J.: Quickcheck: Automatic specification-based testing (2002),

http://www.cs.chalmers.se/∼rjmh/QuickCheck/
12. Runciman, C.: Smallcheck: another lightweight testing library (2006),

http://www.cs.york.ac.uk/fp/darcs/smallcheck/

http://www-users.cs.york.ac.uk/~mfn/sparsecheck/
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.cs.york.ac.uk/fp/darcs/smallcheck/

336 J. Christiansen and S. Fischer

13. Plasmeijer, R., van Eekelen, M.: Concurrent Clean language report (version 2.0),
http://www.cs.ru.nl/∼clean

14. Alimarine, A., Plasmeijer, M.J.: A generic programming extension for Clean. In:
The 13th International workshop on the Implementation of Functional Languages,
Selected Papers. LNCS, pp. 168–185 (2002)

15. Lindblad, F.: Property directed generation of first-order test data. In: Morazan,
M.T., Nilsson, H. (eds.) Draft Proceedings of the Eighth Symposium on Trends in
Functional Programming (2007)

16. Naylor, M., Axelsson, E., Runciman, C.: A functional-logic library for wired. In:
Proceedings of the ACM SIGPLAN workshop on Haskell (2007)

17. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional
logic programs. In: Proc. of the 9th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, ACM Press, New York (2007)

18. Hanus, M.: et al.: PAKCS: The Portland Aachen Kiel Curry System (version 1.8.1)
(2007), http://www.informatik.uni-kiel.de/∼pakcs/

19. Cheney, J., Momigliano, A.: Mechanized metatheory model-checking. In: PPDP
2007: Proc. of the 9th ACM SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, pp. 75–86. ACM Press, New York (2007)

20. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roy-
choudhury, A., Venkatakrishnan, V.N.: XMC: A logic-programming-based verifi-
cation toolset. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 576–580. Springer, Heidelberg (2000)

http://www.cs.ru.nl/~clean
http://www.informatik.uni-kiel.de/~pakcs/

Author Index

Abel, Andreas 3
Álvez, Javier 180
Avanzini, Martin 130

Benton, Nick 224
Byrd, William E. 64

Caballero, Rafael 305
Christiansen, Jan 322
Coquand, Thierry 3

De Koninck, Leslie 32
del Vado Vı́rseda, Rafael 305
Duck, Gregory J. 32
Dybjer, Peter 3

Fischer, Sebastian 322
Friedman, Daniel P. 64

Gelfond, Michael 15
Ghani, Neil 97

Julien, Nicolas 48

Kameyama, Yukiyoshi 239
Kiselyov, Oleg 64
Kobayashi, Naoki 14, 81
Kobayashi, Satoshi 210

López-Fraguas, Francisco Javier 147
Lucio, Paqui 180

McBride, Conor 97
Mellarkod, Veena S. 15
Moser, Georg 130

Nieva, Susana 289

Prince, Rawle 97

Rodŕıguez-Artalejo, Mario 272, 305
Rodŕıguez-Hortalá, Juan 147
Romero-Dı́az, Carlos A. 272

Sáenz-Pérez, Fernando 289
Sánchez-Hernández, Jaime 147, 289
Schaub, Torsten 1
Shan, Chung-chieh 64
Stuckey, Peter J. 32

Tatsuta, Makoto 195

Unno, Hiroshi 81

Vidal, Germán 113
Voigtländer, Janis 163

Yokouchi, Hirofumi 255
Yonezawa, Takuo 239

	Title Page
	Preface
	Organization
	Table of Contents
	Model-Based Knowledge Representation and Reasoning Via Answer Set Programming
	On the Algebraic Foundation of Proof Assistants for Intuitionistic Type Theory
	Introduction
	Categories with Families
	Adding Dependent Function Types and a Universe of Small Types
	A U-cwf of Normal Forms

	Substructural Type Systems for Program Analysis
	Integrating Answer Set Reasoning with Constraint Solving Techniques
	Introduction
	Syntax and Semantics of V(C)
	Syntax
	Semantics

	ADsolver
	Pgroundd
	ADengine

	Representing Knowledge in AC0
	Conclusions

	Optimizing Compilation of CHR with Rule Priorities
	Introduction
	Preliminaries
	Basic Compilation Schema
	The Refined Priority Semantics rp
	Transforming Dynamic Priority Rules
	Compilation

	Optimization
	Reducing Priority Queue Operations
	Late Indexing
	Passive Occurrences

	Evaluation
	Concluding Remarks
	Certified Exact Real Arithmetic Using Co-induction in Arbitrary Integer Base
	Introduction
	Representation of Real Numbers
	Computing Addition
	The Function make_digit
	Computing Series
	Computing Multiplication
	Computing Inverse
	Formalization and Proofs of Correctness
	Benchmarks
	Conclusion and Future Work

	Pure, Declarative, and Constructive Arithmetic Relations (Declarative Pearl)
	Introduction
	Challenges
	Termination and Solvability

	Predicates for Unary Arithmetic
	Solution Sets
	Properties of Addition: Solution Sets of Addition
	Multiplication

	Binary Numerals
	Addition and Subtraction
	Multiplication
	Division, Exponentiation, and Logarithm
	Related Work
	Conclusions

	On-Demand Refinement of Dependent Types
	Introduction
	Language and Dependent Type System
	Type Inference Algorithm
	Soundness

	Extensions
	Implementation and Experiments
	Verification of Sorting Algorithms
	Experiment with Functions from the OCaml List Module

	Related Work
	Conclusion

	Proving Properties about Lists Using Containers
	Introduction
	Introduction to Containers
	Container Morphisms
	Constructions on Containers

	Reasoning with Containers
	Equality of Container Morphisms

	Analysing Finite Types
	Appending Lists
	Flattening Lists of Lists
	Reasoning about Reverse
	Simultaneous Rewriting

	Discussion
	Related Work
	Conclusion and Future Work

	Termination of Narrowing in Left-Linear Constructor Systems
	Introduction
	Preliminaries
	Termination of Narrowing Via Termination of Rewriting
	Automating the Termination Analysis
	From Abstract Terms to Argument Filterings
	A Direct Approach to Termination Analysis
	A Transformational Approach

	The Termination Tool TNT
	Related Work
	Conclusions

	Complexity Analysis by Rewriting
	Introduction
	Preliminaries
	Main Result
	Polynomial Path Order on Sequences
	Predicative Interpretation
	Experimental Data
	An Application: Complexity of Scheme Programs
	Conclusion

	Rewriting and Call-Time Choice: The HO Case
	Introduction
	Preliminaries: HOCRWL
	Expressions, Patterns and Programs
	The HOCRWL Proof Calculus GHR97

	Higher Order let-rewriting
	Rewriting with Local Bindings
	Adequacy of HOlet-rewriting to HOCRWL

	Higher Order let-narrowing
	A Case of Study: Correctness of Bubbling
	Translation to First Order
	Conclusions

	Semantics and Pragmatics of New Shortcut Fusion Rules
	Introduction
	Circular Shortcut Fusion
	Higher-Order Shortcut Fusion
	Circular Versus Higher-Order Fusion
	Variations of Classical Shortcut Fusion
	Variation of the Dual of Classical Shortcut Fusion
	Discussion
	Proofs Appendix
	Proof of Lemma 1
	Proof of Theorem 1

	A Generalization of the Folding Rule for the Clark-Kunen Semantics
	Introduction
	Preliminaries
	The Clark-Kunen Semantics and Non-failure
	Unfold-Fold Transformation Systems

	Generalized Folding
	Conclusions and Future Work

	Types for Hereditary Head Normalizing Terms
	Introduction
	Hereditary Head Normalizing Terms
	Non-existence of a Type for HHN
	Set-Theoretic Properties of HHN
	Types for HHN
	Soundness
	Completeness
	Normalizing Terms in Infinite -Calculus
	Concluding Remarks

	A New Translation for Semi-classical Theories — Backtracking without CPS
	Introduction
	Limiting Realizability Interpretation
	Backtracking Game
	Problems with Game Semantics
	Realizability Interpretation with Backtracking

	Definition of the Translation
	Fundamental Ideas
	Formal Definition of the Translation

	Some Properties and Soundness of the Translation
	Soundness for First-Order Intuitionistic Logic
	Soundness for Arithmetical Axioms
	Soundness for 01-Excluded Middle

	Algorithm Extraction
	Realizability Interpretation
	Type Theoretical Interpretation

	Hierarchy of Weak Axioms of Excluded Middle
	Conclusion and Future Work

	Undoing Dynamic Typing (Declarative Pearl)
	Introduction
	Background: Embedded Interpreters
	Retractable Retractions
	Examples
	Discussion

	Typed Dynamic Control Operators for Delimited Continuations
	Introduction
	Informal Explanation of control and prompt
	A CPS Translation for control/prompt
	Type System
	Design of Type System
	Definition of Type System
	Introducing Trail-Polymorphism

	Properties
	Encoding Shift/Reset by Control/Prompt
	Typed Control/Prompt Is Strictly More Expressive Than Shift/Reset
	Conclusion
	Polymorphic Type System for shift/reset

	Strictness Analysis Algorithms Based on anInequality System for Lazy Types
	Introduction
	Preliminaries
	Another Set of the Rules for Inequalities
	Lazy Nonstandard Types
	The Algorithm ch
	The Algorithm ev
	Extension and Experimental Results
	Conclusion

	Quantitative Logic Programming Revisited
	Introduction
	Qualification Domains
	Syntax and Semantics of QLP(D)
	Programs, Interpretations and Models
	Declarative Semantics

	Goal Solving by SLD(D) Resolution
	Goals and Solutions
	SLD(D) Resolution

	Towards an Implementation
	Conclusions and Future Work

	Formalizing a Constraint Deductive Database Language Based on Hereditary Harrop Formulas with Negation
	Introduction
	HH(C) with Negation
	Syntax
	Sequent Calculus

	Dependency Graphs and Stratified Negation
	Fixed Point Semantics
	Stratified Interpretations and Forcing Relation
	Soundness and Completeness

	Implementing an Instance
	Conclusions

	Declarative Diagnosis of Missing Answers in Constraint Functional-Logic Programming
	Introduction
	Motivation
	Declarative Diagnosis of Missing Answers
	Standardized Programs and Negative Theories
	Negative Proof Trees for Answer Collection Assertions
	Declarative Diagnosis of Missing Answers Using Negative Proof Trees

	Implementation in the TOY System
	Conclusions and Future Work

	EasyCheck — Test Data for Free
	Introduction
	Curry
	Using EasyCheck
	Enumerating Test Cases
	Level Diagonalization
	Randomization

	Case Study
	Generating Only Valid Heaps
	Comparison with QuickCheck

	Related Work
	Conclusions and Future Work

	Author Index

